Math, asked by ravi855, 1 year ago

please answer step by step​

Attachments:

Answers

Answered by Grimmjow
23

\mathsf{Given :\;\dfrac{{sec}^2\phi - sin^2\phi}{tan^2\phi}}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{{sec}\theta = \dfrac{1}{cos\theta}}}}

\mathsf{\implies \dfrac{\bigg(\dfrac{1}{cos\phi}\bigg)^2 - sin^2\phi}{tan^2\phi}}

\mathsf{\implies \dfrac{\dfrac{1}{cos^2\phi} - sin^2\phi}{tan^2\phi}}

\mathsf{\implies \dfrac{\dfrac{1 - sin^2\phi.cos^2\phi}{cos^2\phi}}{tan^2\phi}}

\mathsf{\implies \dfrac{1 - sin^2\phi.cos^2\phi}{cos^2\phi.tan^2\phi}}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{tan\theta = \dfrac{sin\theta}{cos\theta}}}}

\mathsf{\implies \dfrac{1 - sin^2\phi.cos^2\phi}{cos^2\phi.\bigg(\dfrac{sin\phi}{cos\phi}\bigg)^2}}

\mathsf{\implies \dfrac{1 - sin^2\phi.cos^2\phi}{cos^2\phi.\dfrac{sin^2\phi}{cos^2\phi}}}

\mathsf{\implies \dfrac{1 - sin^2\phi.cos^2\phi}{sin^2\phi}}

\mathsf{\implies \dfrac{1}{sin^2\phi} - \dfrac{sin^2\phi.cos^2\phi}{sin^2\phi}}

\mathsf{\implies \bigg(\dfrac{1}{sin\phi}\bigg)^2 - cos^2\phi}

\bigstar\;\;\textsf{We know that : \boxed{\mathtt{co{sec}\theta = \dfrac{1}{sin\theta}}}}

\mathsf{\implies co{sec}^2\phi - cos^2\phi}


Swarup1998: Nice work!
Grimmjow: Thank you! ^^''
Answered by Anonymous
5

Answer:

see the attachment

Step-by-step explanation:

Attachments:

Anonymous: Thanks,Kitana thanks likhoo dost mere sabd kam pad rahe hain
ravi855: ok sir
Similar questions