Math, asked by yusuftouba, 9 months ago

Please answer step by step with attachment

Attachments:

Answers

Answered by Abhishek474241
4

AnSwEr

To prove :- 1/{sec∅+tan∅} = {1-sin∅}/Cos∅

Proof

Breaking sec∅ and tan∅ in sin or cos

LHS

=>1/{1/cos ∅ + sin∅ / cos ∅}

=>Cos∅/ Sin∅ + 1

Here multiplying with 1-sin∅

=>Cos∅ / Sin∅ + 1 × 1-sin∅ / 1-sin∅

=>cos∅(1-sin∅)/1-sin²∅

=>cos∅(1-sin∅)/cos²∅

=>1-sin∅ / cos∅

LHS = RHS (verified)

Answered by Anonymous
0

QUESTION:

 \frac{1}{  \sec( \alpha )  +  \tan( \alpha )  }  =  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) }

\red {( \: I \: let \:  thetha \: as \:  \alpha )}

ANSWER:

We use the trigonometry identity here;

1.

 \sec( \alpha )  =  \frac{1}{ \cos( \alpha ) }

2.

 \tan( \alpha )  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }

3.

 { \sin( \alpha ) }^{2}  +  { \cos( \alpha ) }^{2}  = 1

now come to main question;

TAKING LHS SIDE :

 \frac{1}{ \sec( \alpha )  +  \tan( \alpha ) }  \\  \frac{1}{ \frac{1}{ \cos( \alpha ) +  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }  } }  \\  \frac{1}{ \frac{1 +  \sin( \alpha ) }{ \cos( \alpha ) } }  \\  \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }

\red {[multiplying \: with \: 1 -  \sin( \alpha ) ]}

 \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }  \times  \frac{1 -  \sin( \alpha ) }{1 -  \sin( \alpha ) }  \\  \frac{ \cos( \alpha )  \times (1 -  \sin( \alpha ) }{ ({1 -  \sin( \alpha ) })^{2} }  \\

 \frac{ \cos( \alpha ) (1 -  \sin( \alpha ) }{ { \cos( \alpha ) }^{2} }  \\ \red{(cos \:  \alpha  \: cancelled)}\: out) \\  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) }

LHS = RHS

HENCE PROVED.

plz Mark as brainliest

Similar questions