Math, asked by yusuftouba, 9 months ago

Please answer step by step with attachment

Attachments:

Answers

Answered by RvChaudharY50
92

Solution :-

1/(cotA + tanA) = sinA * cosA

Taking LHS,

→ 1/(cotA + tanA)

using formula :-

  • tanA = (sinA/cosA)
  • cotA = (cosA/sinA)

→ 1/{(cosA/sinA) + (sinA/cosA)}

Now Taking LCM of denominators,

→ 1/{(cos²A + sin²A)/(sinA*cosA)}

Now using 1/(a/b) = (b/a) we get,

→ (sinA*cosA)/(sin²A + cos²A)

Now putting sin²A + cos²A = 1 in denominator,

→ (sinA*cosA)/1

(sinA*cosA) = RHS .(Proved).

Answered by Anonymous
99

{\huge{\bf{\red{\underline{Solution:}}}}}

{\bf{\blue{\underline{Given:}}}}

 \star \:  \: {\sf{  \frac{1}{cot \theta + tan \theta}  = sin \theta \: cos \theta}} \\ \\

{\bf{\blue{\underline{Now:}}}}

Take L.H.S

   \:  \: =  \: {\sf{  \frac{1}{cot \theta + tan \theta} }} \\ \\

  \dagger \:  \:  \boxed{\sf{ cot \theta =  \frac{cos \theta}{sin \theta} }} \\ \\

  \dagger \:  \:  \boxed{\sf{ tan \theta =  \frac{sin \theta}{cos \theta} }} \\ \\

put these values in given ,we get

  \:\:= {\sf{  \frac{1}{ \frac{cos \theta}{sin \theta}  +  \frac{sin \theta}{cos \theta} } }} \\ \\

 \:\: = {\sf{  \frac{1}{ \frac{(cos \theta)(cos \theta) + (sin \theta)(cos \theta)}{(sin \theta)(cos \theta)}} }} \\ \\

  \:  \:  = {\sf{  \frac{sin \theta \: cos \theta}{ {sin}^{2}  \theta +  {cos}^{2}  \theta} }} \\ \\

 \dagger \boxed {\underline{\sf{  {cos }^{2} \theta +  {sin}^{2}  \theta  = 1}}} \\ \\

  \:  \:  = {\sf{  \frac{sin \theta \: cos \theta}{ 1} }} \\ \\

  \:  \:  = {\sf{ {sin \theta \: cos \theta}}} \\ \\

Hence L.HS =R.HS

Similar questions