Math, asked by yusuftouba, 10 months ago

Please answer step by step with attachment

Attachments:

Answers

Answered by Anonymous
11

To prove:

\sf{\frac{1}{1-cos\theta}-\frac{1}{1+cos\theta}=2cot\theta.cosec\theta}

Proof:

\sf{L.H.S.=\frac{1}{1-cos\theta}-\frac{1}{1+cos\theta}}

\sf{=\frac{(1+cos\theta)-(1-cos\theta)}{(1-cos\theta)(1+cos\theta)}}

\sf{=\frac{2cos\theta}{1-cos^{2}\theta}}

\sf\blue{Trigonometric \ identity}

\sf\blue{1-cos^{2}\theta=sin^{2}\theta}

\sf{=\frac{2cos\theta}{sin^{2}\theta}}

\sf{=\frac{2cos\theta}{sin\theta}\times\frac{1}{sin\theta}}

\sf\blue{Trigonometric \ ratio}

\sf\blue{\frac{cos\theta}{sin\theta}=cot\theta \ and \ \frac{1}{sin\theta}=cosec\theta}

\sf{=2cot\theta.cosec\theta}

\sf{=R.H.S.}

\sf\purple{\therefore{\frac{1}{1-cos\theta}-\frac{1}{1+cos\theta}=2cot\theta.cosec\theta}}

\sf{Hence, \ proved.}

Similar questions