Physics, asked by AestheticSky, 2 months ago

Please answer the 3rd and 5th Questions !

My answers were coming wrong I don't why ._. ​

Attachments:

Answers

Answered by King412
50

 \large  \star \rm{\underline\pink{  \: Answer  \: of \:  Question  \: no. 3 \: ) \:  }}

First , we will find the components of the vector along x-axis and y-axis. Then we will find the resultant x and y-components.

x - component of

 \:  \:  \:  \:  \:  \:  \sf \:  \vec{A} = A \cos45 \degree = 100 \:  \cos45 \degree =  \dfrac{100}{ \sqrt{2} }

x-component of

 \:  \:  \:  \:  \:  \:  \sf \:  \vec{B} = \vec{ B }\cos135 \degree  =  -   \dfrac{100}{ \sqrt{2} }

x-component of

  \:  \: \:  \:  \:  \:  \:  \sf \vec{C} = \vec{C} \cos315 \degree = 100 \cos315 \degree

 \:  \:  \: \:  \:  \: \:  \:\:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf = 100 \cos45 \degree =  \dfrac{100}{ \sqrt{2} }

Resultant x-component

 \sf \:  \:  =  \dfrac{100}{ \sqrt{2} }  - \dfrac{100}{ \sqrt{2} }  + \dfrac{100}{ \sqrt{2} }  = \dfrac{100}{ \sqrt{2} }

Now,

y-component of

 \:  \:  \:  \:  \:  \:  \sf \:  \vec{A} = 100 \sin45 \degree =  \dfrac{100}{ \sqrt{2} }

y-component of

 \:  \:  \:  \:  \:  \:  \sf \:  \vec{B} = 100 \sin135 \degree =  \dfrac{100}{ \sqrt{2} }

y-component of

  \:  \: \:  \:  \:  \:  \:  \sf \vec{C} = 100 \sin315 \degree =  -  \dfrac{100}{ \sqrt{2} }

Resultant x-component

 \sf \:  \:  =  \dfrac{100}{ \sqrt{2} }   + \dfrac{100}{ \sqrt{2} }   -  \dfrac{100}{ \sqrt{2} }  = \dfrac{100}{ \sqrt{2} }

Magnitude of resultant

 \sf \:  \:  \:  \:  \:  \:  =   \sqrt{ \bigg( \dfrac{100}{ \sqrt{2} }    \bigg)^{2} + \bigg( \dfrac{100}{ \sqrt{2} }   \bigg)^{2} }

 \:  \:  \:   \:  \:  \:  \:  \: \:  =  \sf \:  \sqrt{10000}

 \:  \:  \:   \:  \:  \:  \:  \: \:  =  \sf \:   \pink{100}

Angle made by a resultant vector with the x-axis is given by

 \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \sf \:  \:  \:  \tan \alpha =  \dfrac{y - comp}{x - comp}

  \:  \:  \:  \:  \:  \sf \:  =  \dfrac{100 \sqrt{2} } {100 \sqrt{2} } = 1

 \:  \sf \:  \:  \implies \:  \alpha =  { \tan}^{ - 1} (1) =  \green{45 \degree}

The magnitude of the resultant vector is 100 units and it makes an angel of 45° with the x-axis.

⠀━━━━━━━━━━━━━━━━━

  \large \star \rm{\underline\pink{  \: Answer  \: of \:  Question  \: no. 5 \: ) \:  }}

First ,Let us find the components of the vector along x-axis and y-axis. Then we will find the resultant x and y-components.

x-component of

 \:  \:  \:  \:  \:  \:  \sf \:  \:  \vec{OA}  = 2 \cos30 \degree =  \sqrt{3}

x-component of  \sf \:  \:  \vec{BC}  = 1.5\cos120 \degree

 \:  \:  \:  =  -  \dfrac{1.5}{2}  = ( - 7.5)

x-component of

 \:  \:  \:  \:  \:  \:  \sf \:  \:  \vec{DE}  = 1 \cos270\degree =  0

y-component of  \sf \:  \:  \vec{OA}  = 2\sin30\degree = 1

y-component of  \sf \:  \:  \vec{BC}  = 1.5\sin120 \degree

 \:  \:  \:  =  -  \dfrac{ \sqrt{3}  \times 1.5}{2}  = ( 1.3)

y-component of  \sf \:  \:  \vec{DE}  = 1\sin270\degree =- 1

x-component of resultant

 \:  \:  \sf \: R _x =  \sqrt{3 }  - 0.75 + 0 = 0.98 m

y-component of resultant

 \:  \:  \sf \: R _y =  1 + 1.3 - 1= 1.3 m

Now,

 \:  \:  \:  \sf Resultant (R)   \sf \:  \:  \:  =   \sqrt{ ( R _x)^{2}  + ( R _y)^{2}   }

 \sf  \:   \:  \:  \:  \:  =  \sqrt{(0.98)^{2}   +  (1.3) ^{2} }

 \sf  \:   \:  \:  \:  \:  =  \sqrt{0.96  +  1.69  }

 \sf  \:   \:  \:  \:  \:  =  \sqrt{2.65  }

 \sf  \:   \:  \:  \:  \:  =  1.6m

If it makes an angle α with the positive x-axis,then

 \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \sf \:  \:  \:  \tan \alpha =  \dfrac{y - comp}{x - comp}

  \:  \:  \:  \:  \:  \sf \:  =  \dfrac{1.3} {0.98 } = 1.332

  \:  \sf \:  \:  \implies \:  \alpha =  { \tan}^{ - 1} (1.32)

Answered by Anonymous
85

-: Question 3 :-

Given :-

Vector A , Vector B and Vector C all have magnitude of 100 units and are inclined at angle of 45° , 135° and 315° .

To Find :-

The magnitude of the resultant vector .

Solution :-

For the diagram refers to the attachment 1 .

It is clear from the diagram that we want the values of Sin 315° , Sin 135° , Cos 315° and Cos 135° . And we knows the value of Cos 45° and Sin 45° .

:- Sin 315°

=> Sin ( 90 × 3 + 45 )°

=> - Cos 45°

{ Sin in 4th Quadrant }

=> -1/√2

{ Cos 45° = 1/√2 }

:- Sin 135°

=> Sin ( 90 × 1 + 45 )°

=> Cos 45°

{ Sin in II Quadrant }

=> 1/√2

{ Cos 45° = 1/√2 }

:- Cos 315°

=> Cos ( 90 × 3 + 45 )°

=> Sin 45°

{ Cos in IV Quadrant }

=> 1/√2

{ Sin 45° = 1/√2 }

:- Cos 135°

=> Cos ( 90 × 1 + 45 )°

=> - Sin 45°

{ Cos in II Quadrant }

=> -1/√2

{ Sin 45° = 1/√2 }

Hence , Sin 315° = -1/√2

=> Sin 45° = 1/√2

=> Sin 135° = 1/√2

=> Cos 45° = 1/√2

=> Cos 315° = 1/√2

=> Cos 135° = -1/√2

Let , The resultant Vector = Vector R

Now. ,we need the components x , y of All the vectors . So ,

Magnitude of Vector A = 100 units

Magnitude of Vector B = 100 units

Magnitude of Vector C = 100 units

X - Component :-

x - component of Vector A :-

100 Cos 45°

=> 100 × 1/√2 = 100/√2

x - component of Vector B :-

100 Cos 135°

=> 100 × -1/√2 = -100/√2

x - component of Vector C :-

100 Cos 315°

=> 100 × 1/√2 = 100/√2

Y - Component :-

y - component of Vector A :-

100 Sin 45°

=> 100 × 1/√2 = 100/√2

y - component of Vector B :-

100 Sin 135°

=> 100 × 1/√2 = 100/√2

y - component of Vector C :-

100 Sin 315°

=> 100 × -1/√2 = -100/√2

Now , Let us calculate the x and y component of the resultant i.e Vector R :-

x - component of Vector R :-

=> 100/√2 + 100/√2 + ( -100/√2 )

=> 100/√2

y - component of Vector R :-

=> 100/√2 + 100/√2 + ( -100/√2 )

=> 100/√2

Now , The magnitude of the resultant is given by :-

√ ( 100/√2 )² + ( 100/√2 )²

=> √ 10000/2 + 10000/2

=> √ 5000 + 5000

=> √10000

=> 100

Now , we knows that , For an angle "x" maked by a vector along x - axis :-

tan x = y component/x - component

=> tan x = 100/√2 ÷ 100/√2

=> tan x = 100/√2 × √2/100

=> tan x = 1

=> x = tan^-1 ( 1 )

=> x = 45°

Therefore ,The magnitude of Vector R is 100 unit at angle of 45° to X - axis.

Hence , Done :)

-: Question 5 :-

For diagram kindly see the attachment 2 .

Here. , We need the values of Sin 120° , Sin 270° , Cos 120° and that of Cos 270° .

:- Sin 120°

=> Sin ( 90 × 1 + 30 )°

=> Cos 30°

{ Sin in II Quadrant }

=> √3/2

{ Cos 30° = √3/2 }

:- Sin 270°

=> Sin ( 90 × 3 + 0 )°

=> - Cos 0°

{ Sin in III Quadrant }

=> -1

{ Cos 0° = 1 }

:- Cos 120°

=> Cos ( 90 × 1 + 30 )°

=> - Sin 30°

{ Cos in II Quadrant }

=> -1/2

{ Sin 30° = 1/2 }

:- Cos 270°

=> Cos ( 90 × 3 + 0 )°

=> - Sin 0°

{ Cos in III Quadrant }

=> -0 = 0

{ Sin 0° = 0 }

Let , The resultant Vector = Vector R

Magnitude of Vector OA = 2 m

Magnitude of Vector BC = 1.5 m

Magnitude of Vector DE = 1m

X - Component :-

x - component of OA :-

2 Cos 30°

=> 2 × √3/2 = √3

x - component of BC :-

1.5 Cos 120°

=> 1.5 × -1/2 = -0.75

x - component of DE :-

1 Cos 270°

=> 1 × 0 = 0

Y - Component :-

y - component of OA :-

2 Sin 30°

=> 2 × 1/2 = 1

y - component of BC :-

1.5 Sin 120°

=> 1.5 × √3/2 = 1.3

y - component of DE :-

1 Sin 270°

=> 1 × -1 = -1

b) :-

The x and y component of Vector R are as follows :-

x - component = √3 + 0 + ( - 0.75 )

=> 1.73 - 0.75 = 0.98

y - component = 1 + 1.3 + ( -1 ) = 1.3

a) :-

The magnitude of Vector A is :-

√ ( 0.98 )² + ( 1.3 )²

=> √ 0.9604 + 1.69

=> √2.6504

=> 1.62 m ( approx )

c) :-

Now , as we knows that for an angle "x" maked by a vector along x - axis :-

tan x = y - component/x - component

=> tan x = 1.3/0.98

=> tan x = 1300/980

=> tan x = 130/98

=> tan x = 1.32

=> x = tan^-1 ( 1.32 )

Hence,. We are Done :) .

I hope your Answers got correct now .

Attachments:
Similar questions