Math, asked by alkamavath, 9 months ago

please answer the 40th q

Attachments:

Answers

Answered by Anonymous
180

\large{\underline{\underline{\mathfrak{\green{\sf{QUESTION}}}}}}.

To Proof,

\pink{\sf{\:\left(1+\dfrac{1}{\tan^2 \theta}\right)\times \left(1+\dfrac{1}{\cot^2 \theta}\right)\:=\dfrac{1}{(\sin^2 \theta - \sin^4 \theta)}}}

\large{\underline{\underline{\mathfrak{\green{\sf{Prove}}}}}}.

L.H.S.

\pink{\sf{\:\left(1+\dfrac{1}{\tan^2 \theta}\right)\times \left(1+\dfrac{1}{\cot^2 \theta}\right)}}

\:\:\:\:\:\:\:\:\star\green{\sf{\:\tan \theta\:=\dfrac{\sin \theta}{\cos \theta}}}

\:\:\:\:\:\:\:\:\star\green{\sf{\:\cot \theta\:=\dfrac{\cos \theta}{\sin \theta}}}

\mapsto\sf{\:\left(1+\dfrac{1}{\dfrac{\sin^2 \theta}{\cos^2 \theta}}\right)\times \left(1+\dfrac{1}{\dfrac{\cos^2 \theta}{\sin^2 \theta}}\right)}

\mapsto\sf{\:\left(1+\dfrac{\cos^2 \theta}{\cos^2 \theta}\right)\times \left(1+\dfrac{\sin^2 \theta}{\cos^2 \theta}\right)}

\mapsto\sf{\:\left(\dfrac{\sin^2 \theta+\cos^2 \theta}{\sin^2 \theta}\right)\times \left(\dfrac{\cos^2 \theta+\sin^2 \theta}{\cos^2 \theta}\right)}

\:\:\:\:\:\:\:\:\:\star\green{\sf{\:(\sin^2 \theta+\cos^2 \theta\:=\:1)}}

\mapsto\sf{\:\left(\dfrac{1}{\sin^2 \theta}\right)\times \left(\dfrac{1}{\cos^2 \theta}\right)}

\:\:\:\:\:\:\:\:\star\green{\sf{\:\left(\cos^2 \theta\:=\:1-\sin^2 \theta\right)}}

\mapsto\sf{\:\left(\dfrac{1}{\sin^2 \theta}\right)\times \left(\dfrac{1}{(1-\sin^2 \theta}\right)}

\mapsto\pink{\sf{\:\left(\dfrac{1}{\sin^2 \theta - \sin^4 \theta}\right)}}

= R.H.S.

That's Proved,

_____________________

Answered by MяMαgıcıαη
12

Answer:

refer to the above attachment for the solution.

Attachments:
Similar questions