Math, asked by joekin, 11 months ago

Please answer the 4th

Attachments:

Answers

Answered by Anonymous
2

 \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \: your \:  \: answer \\  \\  \\  \tan( \frac{ \cos(x) }{1 -  \sin(x) } )  -  \cot(  \sqrt{ \frac{1 +  \cos(x) }{1 -  \cos(x) } }  )  \\  \\ we \:  \: know \:  \: that \\  \\  \cos(x)  = ( \cos( \frac{x}{2} )  +  \sin( \frac{x}{2} ) )( \cos( \frac{x}{2} )  -  \sin( \frac{x}{2} ) ) \\ 1 -  \sin(x)  = ( \cos( \frac{x}{2} )  -  \sin( \frac{x}{2} ) ) {}^{2}  \\ 1 +  \cos(x)  = 2 \cos {}^{2} ( \frac{x}{2} )  \\ an d\\ 1 -  \cos(x)  = 2 \sin {}^{2} ( \frac{ x }{2} )  \\  \\  \\  \tan( \tan {}^{ - 1} ( \frac{\pi}{4}  +  \frac{x}{2}  )  ) -  \cot( \cot {}^{ - 1} ( \frac{x}{2} ) ) \\  \\  \frac{\pi}{4}  +  \frac{x}{2}  -  \frac{x}{2}  \\  \\  =  \frac{\pi}{4}

Similar questions