Math, asked by itzcutiepie009, 3 months ago

please answer the above question ​

Attachments:

Answers

Answered by itzPapaKaHelicopter
2

\huge \fbox \green{Solution: }

 \textbf{According to Question;}

⇒( \frac{ - 3}{2}  {)}^{ - 3}  \div x =  (\frac{4}{27}  {)}^{ - 2}

⇒(  \frac{ - 2}{?3}  {)}^{3}  \div x =  (\frac{27}{4}  {)}^{2}   \:  \:  \:  \: \:  \: [∴( \frac{a}{b}  {)}^{ - c}  =  (\frac{b}{a}  {)}^{c} ]

⇒ (\frac{ - 8}{27} ) \div x = ( \frac{27 \times 27}{16} )

⇒ \frac{( \frac{ - 8}{27}) }{x}  =  (\frac{27 \times 27}{16} )

⇒ (\frac{ - 8}{27x} ) = ( \frac{27 \times 27}{16} )

 \textbf{Cross Multiplying,}

\fbox{we Get:}

 - 8 \times 16 = (27 \times 27 \times 27)x

⇒( - 1)(2 {)}^{3}  \times  {2}^{4}  = ( {3}^{3}  \times  {3}^{3}  \times  {3}^{3} )x

⇒x =  \frac{( - 1)(2 {)}^{3}  \times  {2}^{4} }{ {3}^{3}  \times  {3}^{3}  \times  {3}^{3} }

⇒x =  \frac{( - 1)(2 {)}^{7} }{ {3}^{9} }  \:  \:  \:  \: [∴ {x}^{a}  \times  {x}^{b}  =  {x}^{a + b} ]

⇒x =  \frac{( - 2 {)}^{7} }{ {3}^{9} }  \:  \:  \:  \:  \:  \:  \:  \: [∴( - a {)}^{n} ]

\text{:when n is odd}

 \\  \\  \\  \\ \sf \colorbox{gold} {\red(ANSWER ᵇʸ ⁿᵃʷᵃᵇ⁰⁰⁰⁸}

Answered by anitagatte3
4

Answer:

hi blink

Step-by-step explanation:

Good evening

Can you be my good friend?

Similar questions