please answer the above ⬆️⬆️⬆️ question
Attachments:
ssvijay738:
hi
Answers
Answered by
1
this question is of chapter:- trigonometry
sol:-
given:- 4tan0=3
tan0=3/4
AB/BC=3/4
let the ratios be k
AB=3k and BC=4k
In ∆ABC,
angle B= 90°
by Pythagoras theorem
AC²=(3k)²+(4k)²
AC²=9k²+16k²
AC²=25k²
AC=5k
sin0=AB/AC
=3k/5k
=3/5
cos0=BC/AC
=4k/5k
=4/5
sol:-
given:- 4tan0=3
tan0=3/4
AB/BC=3/4
let the ratios be k
AB=3k and BC=4k
In ∆ABC,
angle B= 90°
by Pythagoras theorem
AC²=(3k)²+(4k)²
AC²=9k²+16k²
AC²=25k²
AC=5k
sin0=AB/AC
=3k/5k
=3/5
cos0=BC/AC
=4k/5k
=4/5
Answered by
0
GOOD MORNING FRIENDS
ANSWER
given:- 4 tan0=3
tan0=3/4
AB/BC=3/4
let the ratios be k
AB=3k and BC=4k
In ∆ABC,
angle B= 90°
by Pythagoras theorem
AC²=(3k)²+(4k)²
AC²=9k²+16k²
AC²=25k²
AC=5k
sin
0=AB/AC
=3k/5k
=3/5
cos0=BC/AC
=4k/5k
=4/5
\frac{4 \sin(0) - \cos(0) + 1 }{4 \sin(0) + \cos(0) - 1 } = \frac{4 \times \frac{3}{5} - \frac{4}{5} + 1 }{4 \times \frac{3}{5} + \frac{4}{5} - 1}
4sin(0)+cos(0)−1
4sin(0)−cos(0)+1
=
4×
5
3
+
5
4
−1
4×
5
3
−
5
4
+1
\frac{ \frac{12}{5} - \frac{4}{5} + 1 }{ \frac{12}{5} + \frac{4}{5} - 1 }
5
12
+
5
4
−1
5
12
−
5
4
+1
\frac{12 - 4 + 5}{12 + 4 - 5}
12+4−5
12−4+5
\frac{4 \sin(0) - \cos(0) + 1 }{4 \sin(0) + \cos(0) - 1 } = \frac{13}{11}
4sin(0)+cos(0)−1
4sin(0)−cos(0)+1
=
11
13
I hope this helps u ❤️✔️❤️
plz Follow Me ☺️❣️❤️❣️
ANSWER
given:- 4 tan0=3
tan0=3/4
AB/BC=3/4
let the ratios be k
AB=3k and BC=4k
In ∆ABC,
angle B= 90°
by Pythagoras theorem
AC²=(3k)²+(4k)²
AC²=9k²+16k²
AC²=25k²
AC=5k
sin
0=AB/AC
=3k/5k
=3/5
cos0=BC/AC
=4k/5k
=4/5
\frac{4 \sin(0) - \cos(0) + 1 }{4 \sin(0) + \cos(0) - 1 } = \frac{4 \times \frac{3}{5} - \frac{4}{5} + 1 }{4 \times \frac{3}{5} + \frac{4}{5} - 1}
4sin(0)+cos(0)−1
4sin(0)−cos(0)+1
=
4×
5
3
+
5
4
−1
4×
5
3
−
5
4
+1
\frac{ \frac{12}{5} - \frac{4}{5} + 1 }{ \frac{12}{5} + \frac{4}{5} - 1 }
5
12
+
5
4
−1
5
12
−
5
4
+1
\frac{12 - 4 + 5}{12 + 4 - 5}
12+4−5
12−4+5
\frac{4 \sin(0) - \cos(0) + 1 }{4 \sin(0) + \cos(0) - 1 } = \frac{13}{11}
4sin(0)+cos(0)−1
4sin(0)−cos(0)+1
=
11
13
I hope this helps u ❤️✔️❤️
plz Follow Me ☺️❣️❤️❣️
Similar questions