Math, asked by Anonymous, 1 year ago

please answer the above ⬆️⬆️⬆️ question

Attachments:

ssvijay738: hi
ssvijay738: plz Follow Me ☺️
Anonymous: pls follw me first

Answers

Answered by ajayviratkohli
1
this question is of chapter:- trigonometry

sol:-

given:- 4tan0=3

tan0=3/4

AB/BC=3/4

let the ratios be k

AB=3k and BC=4k

In ∆ABC,

angle B= 90°

by Pythagoras theorem

AC²=(3k)²+(4k)²

AC²=9k²+16k²

AC²=25k²

AC=5k

sin0=AB/AC

=3k/5k

=3/5

cos0=BC/AC

=4k/5k

=4/5


 \frac{4 \sin(0) - \cos(0) + 1 }{4 \sin(0) + \cos(0) - 1 } = \frac{4 \times \frac{3}{5} - \frac{4}{5} + 1 }{4 \times \frac{3}{5} + \frac{4}{5} - 1}

 \frac{ \frac{12}{5} - \frac{4}{5} + 1 }{ \frac{12}{5} + \frac{4}{5} - 1 }

 \frac{12 - 4 + 5}{12 + 4 - 5}

 \frac{4 \sin(0) - \cos(0) + 1 }{4 \sin(0) + \cos(0) - 1 } = \frac{13}{11}
Answered by ssvijay738
0
GOOD MORNING FRIENDS

ANSWER

given:- 4 tan0=3

tan0=3/4

AB/BC=3/4

let the ratios be k

AB=3k and BC=4k

In ∆ABC,

angle B= 90°

by Pythagoras theorem

AC²=(3k)²+(4k)²

AC²=9k²+16k²

AC²=25k²

AC=5k

sin

0=AB/AC

=3k/5k

=3/5

cos0=BC/AC

=4k/5k

=4/5

\frac{4 \sin(0) - \cos(0) + 1 }{4 \sin(0) + \cos(0) - 1 } = \frac{4 \times \frac{3}{5} - \frac{4}{5} + 1 }{4 \times \frac{3}{5} + \frac{4}{5} - 1}

4sin(0)+cos(0)−1

4sin(0)−cos(0)+1
=



5

3

+

5

4

−1



5

3



5

4

+1

\frac{ \frac{12}{5} - \frac{4}{5} + 1 }{ \frac{12}{5} + \frac{4}{5} - 1 }

5

12

+

5

4

−1

5

12



5

4

+1

\frac{12 - 4 + 5}{12 + 4 - 5}

12+4−5

12−4+5

\frac{4 \sin(0) - \cos(0) + 1 }{4 \sin(0) + \cos(0) - 1 } = \frac{13}{11}

4sin(0)+cos(0)−1

4sin(0)−cos(0)+1

=

11

13

I hope this helps u ❤️✔️❤️

plz Follow Me ☺️❣️❤️❣️

Anonymous: wtf
Anonymous: see your answer
Similar questions