Math, asked by Anonymous, 7 months ago

Please answer the above question only if u knew the answer..

⭐Explaination needed
⭐No copied answers

Attachments:

Answers

Answered by shadowsabers03
20

If a graph of a function in x is symmetric about the y axis, the function is said to be an even function.

Because, suppose a function f:A\to B is symmetric about y axis, then we have,

\longrightarrow f(-h)=f(h)\quad\!\forall h\in A

This is the condition for a function being even. Hence f is an even function.

Let us consider first function.

\longrightarrow f(x)=\log_e\left(x+\sqrt{x^2+1}\right)

Replacing x by -x,

\longrightarrow f(-x)=\log_e\left(-x+\sqrt{(-x)^2+1}\right)

\longrightarrow f(-x)=\log_e\left(-x+\sqrt{x^2+1}\right)

But, on multiplying and dividing x+\sqrt{x^2+1} with -x+\sqrt{x^2+1},

\longrightarrow f(-x)=\log_e\left(\dfrac{(-x+\sqrt{x^2+1})(x+\sqrt{x^2+1})}{x+\sqrt{x^2+1}}\right)

\longrightarrow f(-x)=\log_e\left(\dfrac{(\sqrt{x^2+1}-x)(\sqrt{x^2+1}+x)}{x+\sqrt{x^2+1}}\right)

\longrightarrow f(-x)=\log_e\left(\dfrac{x^2+1-x^2}{x+\sqrt{x^2+1}}\right)

\longrightarrow f(-x)=\log_e\left(\dfrac{1}{x+\sqrt{x^2+1}}\right)

\longrightarrow f(-x)=\log_e\left(x+\sqrt{x^2+1}\right)^{-1}

\longrightarrow f(-x)=-\log_e\left(x+\sqrt{x^2+1}\right)

That is,

\longrightarrow f(-x)=-f(x)

This means f(x) is an odd function. So its graph is not symmetric about y axis.

Hence (A) is wrong.

Let us consider second function.

\longrightarrow f(x+y)=f(x)+f(y)\quad\!\forall x,\,y\in\mathbb{R}

Take y=0.

\longrightarrow f(x+0)=f(x)+f(0)

\longrightarrow f(x)=f(x)+f(0)

\longrightarrow f(0)=0

And take y=-x.

\longrightarrow f(x-x)=f(x)+f(-x)

\longrightarrow f(0)=f(x)+f(-x)

\longrightarrow 0=f(x)+f(-x)

\longrightarrow f(-x)=-f(x)

This implies f(x) is an odd function. So its graph is not symmetric about y axis.

Hence (B) is wrong.

Let us consider third function.

\longrightarrow f(x)=\cos x+\sin x\quad\quad\dots(1)

Replacing x by -x,

\longrightarrow f(-x)=\cos (-x)+\sin (-x)

\longrightarrow f(-x)=\cos x-\sin x\quad\quad\dots(2)

Subtracting (2) from (1),

\longrightarrow f(x)-f(-x)=\cos x+\sin x-\cos x+\sin x

\longrightarrow f(x)-f(-x)=2\sin x

\longrightarrow f(-x)=f(x)-2\sin x

If \sin x=0 only,

\longrightarrow f(-x)=f(x)

Since \sin x\neq0 for every x (not considering values of x satisfying the equality particularly), f(x) is not an even function and so the graph is not symmetric about y axis.

Hence (C) is wrong.

Therefore, the correct answer is (D) None of these.

Similar questions