Math, asked by jessy27, 1 month ago

please answer the fast in detailed solutions no spam wrong answers will be reported
click the image for bigger view​

Attachments:

Answers

Answered by mathdude500
3

\large\underline{\sf{Given \:Question - }}

Evaluate

\displaystyle\int_{-2}^1\rm  {(2 {t}^{2}  - 1)}^{2} \: dt

\large\underline{\sf{Solution-}}

Consider,

 \: \rm :\longmapsto\:\displaystyle\int_{-2}^1\rm  {(2 {t}^{2}  - 1)}^{2} \: dt

We know,

\boxed{ \bf{ \:  {(x - y)}^{2} =  {x}^{2} +  {y}^{2} - 2xy}}

So, using this identity, we get

 \rm \:  =  \: \displaystyle\int_{-2}^1\rm ( {4t}^{4} + 1 -  {4t}^{2}) \: dt

\rm \:  =  \: \displaystyle\int_{-2}^1\rm  {4t}^{4}dt \:  +  \: \displaystyle\int_{-2}^1\rm dt \:  -  \: \displaystyle\int_{-2}^1\rm  {4t}^{2} \: dt

\rm \:  =  \:4 \displaystyle\int_{-2}^1\rm  {t}^{4}dt \:  +  \: \displaystyle\int_{-2}^1\rm dt \:  -  \: 4\displaystyle\int_{-2}^1\rm  {t}^{2} \: dt

We know

\boxed{ \bf{ \: \displaystyle\int\rm  {x}^{n} \: dx \:  =  \:  \frac{ {x}^{n + 1} }{n + 1} + c}}

So, using this result, we get

\rm \:  =  \: 4\bigg(\dfrac{ {t}^{4 + 1} }{4 + 1} \bigg)_{-2}^1 + \bigg( t\bigg) _{-2}^1 - 4\bigg(\dfrac{ {t}^{2 + 1} }{2 + 1} \bigg)_{-2}^1

\rm \:  =  \:4 \bigg(\dfrac{ {t}^{5} }{5} \bigg)_{-2}^1 + \bigg( t\bigg) _{-2}^1 - 4\bigg(\dfrac{ {t}^{3} }{3} \bigg)_{-2}^1

\rm \:  =  \:4 \bigg(\dfrac{ {1}^{5}  - ( - 2) {}^{5} }{5} \bigg) + \bigg( 1 - ( - 2)\bigg) - 4\bigg(\dfrac{ {1}^{3}  -  {( - 2)}^{3} }{3} \bigg)

\rm \:  =  \: 4\bigg(\dfrac{ 1 - ( - 32) }{5} \bigg) + \bigg( 1 + 2\bigg) - 4\bigg(\dfrac{ 1  + 8 }{3} \bigg)

\rm \:  =  \: 4\bigg(\dfrac{33}{5} \bigg) + \bigg(3\bigg) - (12)

\rm \:  =  \: \bigg(\dfrac{132}{5} \bigg) + 3  -  12

\rm \:  =  \: \bigg(\dfrac{132}{5} \bigg)  - 9

\rm \:  =  \: \dfrac{132 - 45}{5}

\rm \:  =  \: \dfrac{87}{5}

Additional Information :-

\boxed{ \bf{ \: \displaystyle\int \: kdx \:  =  \: kx \:  +  \: c}}

\boxed{ \bf{ \: \displaystyle\int \: cosxdx \:  =  \: sinx \:  +  \: c}}

\boxed{ \bf{ \: \displaystyle\int \: sinxdx \:  = -   \: cosx \:  +  \: c}}

\boxed{ \bf{ \: \displaystyle\int \: tanxdx \:  = \:  log \: secx \:  +  \: c}}

\boxed{ \bf{ \: \displaystyle\int \: cotxdx \:  = \:  log \: sinx \:  +  \: c}}

\boxed{ \bf{ \: \displaystyle\int \: cosecxdx \:  = \:  log \: (cosecx - cotx)\:  +  \: c}}

\boxed{ \bf{ \: \displaystyle\int \: secxdx \:  = \:  log \: (secx + tanx)\:  +  \: c}}

Similar questions