Math, asked by diachaudhary06, 1 year ago

Please answer the first part of qn 30....

Attachments:

Answers

Answered by siddhartharao77
1

Answer:

x = 8, y = 7

Step-by-step explanation:

Class               Frequency             c.f

0-10                      5                        5

10-20                   x                         5 + x

20-30                  20                      20 + 5 + x = 25 + x

30-40                  15                       25 + 15 + x = 40 + x

40-50                   y                        40 + x + y

50-60                   5                       45 + x + y

Total                    60


Now,

From the table it can be observer that n = 60.

45 + x + y = 60

x + y = 15   ----- (i)


Given:

Median = 28.5.

Range = Median class = 20 - 30.

Lower limit l = 20.

Cumulative Frequency(cf) = 5 + x.

Frequency of median class (f)= 20.

class size(h) = 10.

∴ Median = l + [n/2 - cf/f] * h

⇒ 28.5 = 20 + [30 - (5 + x)/20] * 10

⇒ 28.5 = 20 + [25 - x/20] * 10

⇒ 28.5 = 20 + [25 - x]/2

⇒ 57 = 40 + 25 - x

⇒ 57 - 65 = -x

⇒ x = 8

Substitute x = 8 in (i), we get

⇒ x + y = 15

⇒ 8 + y = 15

⇒ y = 7

Therefore, the value of x = 8 and y = 7.


Hope it helps!

Answered by Anonymous
1

Answer:

ıllıllı hey ıllıllı

Step-by-step explanation:


Median:

Median is that value of the given observation which divides it into exactly two parts.


MEDIAN for the GROUPED data :


For this we find the Cumulative frequency(cf) of all the classes and n/2 , where n =  number of observations.


Now find the class whose Cumulative frequency is greater than and nearest to n/2 and this class is called median class,then use  the following formula calculating the median.


MEDIAN = l + [(n/2 - cf )/f ] ×h


Where,

l = lower limit of the median class

n = number of observations

cf = cumulative frequency  of class interval preceed the  median class

f = frequency  of median class

h = class  size

 

n  =  60 and hence  n /2 =  30

Median class is 20 – 30 with cumulative frequency  = 25 + x

lower limit of median class = 20,  c f  =  5  +  x ,  f  =  20  and  h  =  10

Median  =  l  +  n /2  −  c f  / f  ×  h

Or,  

28.5  =  20  +  30   −  5  −  x  / 20  ×  10

Or,  25  −  x  / 2  =  8.5

Or,  25  −  x  =  17

Or,  x  =  25  −  17  =  18

Now, from cumulative frequency, we can find the value of x + y as follows:

60  =  5  +  20  +  15  +  5  +   x  +  y

Or,  45  +  x  +   y  =   60

Or,  x  +  y  =  60   −  45  =  15

Hence,  

y  =  15  −  x  =  15  −  8   =   7

Hence, x = 8 and y = 7

Similar questions