Math, asked by Anonymous, 1 year ago

Please answer the following question

Attachments:

Answers

Answered by DhanyaDA
19

The IDENTITIES given in the question are used and some other identities are also used

IDENTITIES USED:

 >( (a)^{m} ) {n}  =  {(a)}^{mn}

 >   {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

 >  \dfrac{ {a}^{m} }{ {a}^{n} }  =   {a}^{m - n}

Attachments:
Answered by Rose08
15

\bf\huge\underline\purple{Solution}

 ({ \sqrt{x} })^{ \frac{ - 2}{3} } . \sqrt{ {y}^{4} }  \div  \sqrt{xy \frac{ - 1}{2} }

 =  \dfrac{ ({ \sqrt{x}) }^{ \frac{ - 2}{3} } . { \sqrt{y} }^{4}  }{ \sqrt{x. {y}^{  \frac{ - 1}{2} } } }

  =  \dfrac{ {x}^{ \frac{1}{2} \times  \frac{ - 2}{3}  }. {y}^{4 \times  \frac{1}{2} }  }{ {x}^{ \frac{1}{2} }. {y}^{ \frac{1}{2} \times  \frac{ - 1}{2}  }  }

 =  \dfrac{ {x}^{ \frac{ - 1}{3} }. {y}^{2}  }{ {x}^{ \frac{1}{2} }. {y}^{ \frac{ - 1}{4} }  }

since \:  \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}

 =  {x}^{ \frac{ - 1}{3} -  \frac{1}{2}  } . {y}^{2 +  \frac{1}{4} }

 =  {x}^{ \frac{ - 2 - 3}{6} } . {y}^{ \frac{8 + 1}{4} }

 =   {x}^{ \frac{ - 5}{6} } . {y}^{ \frac{9}{4} }

Similar questions