Math, asked by akshitatripathi, 11 months ago

Please answer the following question ​

Attachments:

Answers

Answered by nawabzadi23
0

Step-by-step explanation:

Ab =  6 (A+b)

Ab = 36 (A² + b² + 2 Ab)

36 A² + 71 A b + 36 b² = 0

Let   A/b =  x

so   36 x² +  71 x + 36 = 0

           x = [ -71 +- √(71² - 4*36²) ]/2

A + b =  1/6 * √Ab   --- (1)

(A - b)² = (A + b)² - 4 a b 

            = Ab/36  - 4 a b

            = - 143 A b/36       --- (2)

A - b   = + √(-143Ab) /6       or    - √(-143 Ab) /6      --- (3)

If  Ab is positive then  (1) is valid, but (3) is not valid.  If  Ab is negative, then (1) is not valid,  but (2) is valid.

There are no real solutions to the given problem. Only complex number solutions exist.

hope this will help you nd make sure to mark as Brainlist dear

Answered by EdzioJohn
0

Step-by-step explanation:Ab =  6 (A+b)

Ab = 36 (A² + b² + 2 Ab)

36 A² + 71 A b + 36 b² = 0

Let   A/b =  x

so   36 x² +  71 x + 36 = 0

           x = [ -71 +- √(71² - 4*36²) ]/2

A + b =  1/6 * √Ab   --- (1)

(A - b)² = (A + b)² - 4 a b 

            = Ab/36  - 4 a b

            = - 143 A b/36       --- (2)

A - b   = + √(-143Ab) /6       or    - √(-143 Ab) /6      --- (3)

If  Ab is positive then  (1) is valid, but (3) is not valid.  If  Ab is negative, then (1) is not valid,  but (2) is valid.

There are no real solutions to the given problem. Only complex number solutions exist.

Similar questions