Please answer the following question
Answers
Answer:
2√2
Step-by-step explanation:
Given,
x = 3 + 2√2
⇒ x = 3 + 2√2
⇒ x = 2 + 1 + 2√2
⇒ x = ( √2 )^2 + ( √1 )^2 + 2( √1 )( √2 )
Using a^2 + b^2 + 2ab = ( a + b )^2
⇒ x = ( √2 + √1 )^2
⇒ x = ( √2 + 1 )^2 ...( 1 )
⇒ 1 / x = 1 / ( √2 + 1 )^2
Multiply and divide by ( √2 - 1 )^2 on right hand side
⇒ 1 / x = ( √2 - 1 )^2 / { ( √2 + 1 )( √2 - 1 ) }^2
Using ( a + b)( a - b ) = a^2 - b^2
⇒ 1 / x = ( √2 - 1 )^2 / { ( √2 )^2 - 1 }
⇒ 1 / x = ( √2 - 1 )^2 / 1
⇒ 1 / x = ( √2 - 1 )^2 ...( 2 )
From ( 1 ) and ( 2 ) :
⇒ x = ( √2 + 1 )^2 ⇒ x^( 1 / 2 ) = √2 + 1
⇒ 1 / x = ( √2 - 1 )^2 ⇒ 1 / x^( 1 / 2 ) = √2 - 1
From this conclusion :
= > x^( 1 / 2 ) + 1 / x^( 1 / 2 ) = √2 + 1 + √2 - 1
= > x^( 1 / 2 ) + x^( - 1 / 2 ) = 2√2
x ^ ½ = ( 3 + 2√2 ) ^ ½
=> √ x = √ ( 3 + 2√2 )
=> √ x = √ { (√2)² + 1² + 2×√2×1 )}
=> √ x = √ { √2 + 1 } ²
=> x ^ 1/2 = √2 + 1
=> x ^ -1/2 = 1 / x^1/2 = 1 / ( √2 + 1 )
=> rationalizing the denominator ,
=> x ^ -1/2 = √ 2 - 1
now ,
=> x^1/2 - x^-1/2 = √ 2 + 1 - √2 + 1 = 2