Math, asked by siddhibhurle, 4 days ago

Please Answer the following question
Spamer Stay Away
Q Find the values of a and b​

Attachments:

Answers

Answered by bagshalini170
1

Answer:

a=0, b= 1

Step-by-step explanation:

7+3√5 (3-√5) / (3+√5) (3-√5) - 7-3√5(3+√5) / (3-√5)(3+√5) = a + √5b

21-7√5+9√5-15 / 9-5 - 21+7√5-9√5-15 / 9-5

6+2√5 / 4 - 6-2√5 / 4

2(3+√5) / 4 - 2(3-√5) / 4

3+√5-3+√5 / 2

√5 = a+√5b

a+ √5b= √5*1 + a*0 (comparing two equations)

hence a=0, b=1

Answered by SachinGupta01
7

\large \sf \underline{Solution - }

 \rm Given \:  :    \: \dfrac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  - \dfrac{7  -  3 \sqrt{5} }{3 -   \sqrt{5} }= a +  \sqrt{5b}

  • Here, we have to find the value of a and b.

➢ Multiplying the conjugate of their denominator to both the fractions.

So,

 \rm \: \implies \dfrac{7 + 3 \sqrt{5} }{3 +  \sqrt{5} }  - \dfrac{7  -  3 \sqrt{5} }{3 -   \sqrt{5} }= a +  \sqrt{5b}

 \rm \: \implies \dfrac{(7 + 3 \sqrt{5})(3 -   \sqrt{5}) }{(3 +  \sqrt{5} )(3 -   \sqrt{5})}  - \dfrac{(7  -  3 \sqrt{5}) (3 +  \sqrt{5})}{(3 -   \sqrt{5})(3 +  \sqrt{5}) }= a +  \sqrt{5b}

We know,

 \rm\implies (a - b)(a + b) = (a)^{2} - (b)^{2}

Then,

 \rm \: \implies \dfrac{(7 + 3 \sqrt{5})(3 -   \sqrt{5}) }{3^{2} -  ( \sqrt{5} )^{2} }  - \dfrac{(7  -  3 \sqrt{5}) (3 +  \sqrt{5})}{3^{2} -  ( \sqrt{5} )^{2} } =  a  + \sqrt{5b}

 \rm \: \implies \dfrac{(7 + 3 \sqrt{5})(3 -   \sqrt{5}) }{9-  5 }  - \dfrac{(7  -  3 \sqrt{5}) (3 +  \sqrt{5})}{9 -  5 } =  a +  \sqrt{5b}

 \rm \: \implies \dfrac{(7 + 3 \sqrt{5})(3 -   \sqrt{5}) }{4}  - \dfrac{(7  -  3 \sqrt{5}) (3 +  \sqrt{5})}{4 } =  a  + \sqrt{5b}

Combine both the fractions,

 \rm \: \implies \dfrac{(7 + 3 \sqrt{5})(3 -   \sqrt{5}) -  (7  -  3 \sqrt{5}) (3 +  \sqrt{5})}{4}   =  a +  \sqrt{5b}

 \rm \: \implies \dfrac{21-7\sqrt{5}+9\sqrt{5}-15-21-7\sqrt{5}+9\sqrt{5}+15}{4}=  a +  \sqrt{5b}

 \rm \: \implies \dfrac{4 \sqrt{5} }{4}=  a +  \sqrt{5b}

 \rm \: \implies  \sqrt{5} =  a +  \sqrt{5b}

 \rm \:  : \implies 0 +  \sqrt{5 \times 1}   =  a +  \sqrt{5b}

Therefore,

  • The value of a is 0
  • The value of b is 1
Similar questions