please answer the following question tennetiraj sir
Answers
Answer:
The answer is option b subject to the people must use umbrella
Step-by-step explanation:
Solution :-
(a¹/⁸ + a-¹/⁸)(a¹/⁸-a-¹/⁸)(a¹/⁴+a-¹/⁴)(a¹/²+a-¹/²)
[(a¹/⁸ + a-¹/⁸)(a¹/⁸-a-¹/⁸)](a¹/⁴+a-¹/⁴)(a¹/²+a-¹/²)
[(a¹/⁸)²-(a-¹/⁸)²](a¹/⁴+a-¹/⁴)(a¹/²+a-¹/²)
Since (a+b)(a-b)=a²-b²
Where a = a¹/⁸ and b= a-¹/⁸
=>[(a²/⁸) - (a-²/⁸)](a¹/⁴+a-¹/⁴)(a¹/²+a-¹/²)
Since (a^m)^n = a^mn)
=> (a¹/⁴- a-¹/⁴)(a¹/⁴+a-¹/⁴)(a¹/²+a-¹/²)
=>[(a¹/⁴- a-¹/⁴)(a¹/⁴+a-¹/⁴)](a¹/²+a-¹/²)
=> [(a¹/⁴)² - (a-¹/⁴)²](a¹/²+a-¹/²)
Since (a+b)(a-b)=a²-b²
Where a = a¹/⁴ and b= a-¹/⁴
=>(a²/⁴ - a-²/⁴)(a¹/² + a-¹/²)
Since (a^m)^n = a^mn)
=> (a¹/² - a-¹/2)(a¹/² + a-¹/²)
=> [(a¹/²)² - (a-¹/²)²]
Since (a+b)(a-b)=a²-b²
Where a = a¹/² and b= a-¹/²
=> (a²/²) - (a-²/²)
Since (a^m)^n = a^mn)
=> a - a-¹
We know that
a^-n = 1/a^n
=> a - (1/a)
=> [(a×a)-1]/a
=> (a²-1)/a
Answer:-
The value for the given expresion is (a²-1)/a
Used formulae:-
- (a+b)(a-b)=a²-b²
- (a^m)^n = a^mn
- a^-n = 1/a^n