Math, asked by tanishka2606, 9 months ago

Please answer the following question....

Too much for my brain

Attachments:

Answers

Answered by DrNykterstein
1

Option (2)

Given:

 =  =  >  \:  \: a =  \frac{ \sqrt{5} + 1 }{ \sqrt{5}  - 1}  \\  \\  =  =  >  \:  \: a =  \frac{ \sqrt{5}  + 1}{ \sqrt{5}  - 1}  \times  \frac{ \sqrt{5}  + 1 }{ \sqrt{5} + 1 }  \\  \\  =  =  >  \:  \: a =  \frac{ {( \sqrt{5}  + 1)}^{2} }{ {( \sqrt{5}) }^{2} -  {(1)}^{2}  }  \\  \\  =  =  >  \:  \: a =  \frac{ 5 + 1 + 2 \sqrt{5}  }{5 - 1}  \\  \\  =  =  >  \:  \: a =  \frac{2(3 +  \sqrt{5} )}{4}  \\  \\  =  =  >  \:  \: a =  \frac{3 +  \sqrt{5} }{2}

and

 =  =  >  \:  \: b =  \frac{ \sqrt{5}  - 1}{ \sqrt{5} + 1 }  \\  \\  =  =  >  \:  \: b =  \frac{ \sqrt{5}  - 1}{ \sqrt{5}  + 1}  \times  \frac{ \sqrt{5} - 1 }{ \sqrt{5} - 1 }  \\  \\  =  =  >  \:  \: b =  \frac{ {( \sqrt{5}  - 1)}^{2} }{ {( \sqrt{5}) }^{2} -  {(1)}^{2}  }  \\  \\  =  =  >  \:  \: b =  \frac{5 + 1 - 2 \sqrt{5} }{4}  \\  \\  =  =  >  \:  \: b =  \frac{2(3 -  \sqrt{5} )}{4}  \\  \\  =  =  >  \:  \: b =  \frac{3 -  \sqrt{5} }{2}

Now,

a = (3 + √5)/ 2 ; b = (3 - √5)/2

Refer to the attachment.

Attachments:
Similar questions