Please answer the question............
Answers
Note : Theta is written as A.
Answer:
Required numeric value of cosecA + cotA is √2 + 1.
Step-by-step explanation:
Given,
cosecA - cotA = √2 - 1
From the properties of trigonometry :
- cosec^2 B - cot^2 B = 1 , where B is an angle.
Thus,
= > cosec^2 A - cot^2 A = 1
= > ( cosecA + cotA )( cosecA - cotA ) = 1 { using a^2 - b^2 = ( a + b ) ( a - b) }
= > ( cosecA + cotA )( √2 - 1 ) = 1 { given, cosecA - cotA = √2 - 1 }
= > cosecA + cotA = 1 / ( √2 - 1 )
On right hand side, divide and multiply by √2 + 1 :
= > cosecA + cotA = 1 / ( √2 - 1 ) x ( √2 + 1 ) / ( √2 + 1 )
= > cosecA + cotA = ( √2 + 1 ) / ( √2 - 1 )( √2 + 1 )
= > cosecA + cotA = ( √2 + 1 ) / { ( √2 )^2 - 1^2 } { using ( a + b )( a - b ) = a^2 - b^2 }
= > cosecA + cotA = ( √2 + 1 ) / ( 2 - 1 ) = ( √2 + 1 ) / 1
= > cosecA + cotA = √2 + 1
Hence the required numeric value of cosecA + cotA is √2 + 1.
Solution :-
Given
cosec θ - cot θ = √2 - 1
We know that
cosec² θ - cot² θ = 1
It can be written as
⇒ (cosec θ + cot θ)(cosec θ - cot θ) = 1
Since a² - b² = (a + b)(a - b)
By substituting the value of cosec θ - cot θ in the above equation
⇒ (cosec θ + cot θ)(√2 - 1) = 1
⇒ cosec θ + cot θ = 1/(√2 - 1)
By rationalising the denominator of RHS
⇒ cosec θ + cot θ = 1/(√2 - 1) * (√2 + 1)/(√2 + 1)
⇒ cosec θ + cot θ = (√2 + 1)/(2 - 1)
⇒ cosec θ + cot θ = (√2 + 1)/1
⇒ cosec θ + cot θ = √2 + 1