Math, asked by shyamalabujji22, 5 months ago

please answer the question​

Attachments:

Answers

Answered by ExElegant
3

Question :-

\sf{if \: CosecA + CotA = m \: then \: , show \: that \: \dfrac{m^{2} - 1}{m^{2} + 1} = CosA}

Given :-

\sf{(CosecA + CotA) = m}

To prove :-

\sf{\dfrac{m^{2} - 1}{m^{2} + 1} = CosA}

Using Identity :-

\sf{(Cosec^{2} A - Cot^{2} A) = 1}

Solution :-

\sf{(CosecA + CotA = m} ---(1)

\sf{From \: using \: the \: above \: identity-}

\sf{(CosecA + CotA)(CosecA - CotA) = 1}

\sf{m(CosecA - CotA) = 1}

\sf{(CosecA - CotA) =\dfrac{1}{m}} --(2)

\sf{From \: eq.(1) + eq.(2)-}

\sf{2CosecA =(m + \dfrac{1}{m})}

\sf{2CosecA =\dfrac{(m^{2} + 1)}{m}}

\sf{CosecA =\dfrac{(m^{2} + 1)}{2m}}

\sf{SinA =\dfrac{1}{CosecA}=\dfrac{2m}{(m^{2}+1)}}

\sf{CosA =\sqrt{(1 - Sin^{2} A)}}

\sf{CosA =\sqrt{1 - \dfrac{4m^{2}}{(m^{2}+1)^{2}}}}

\sf{CosA =\sqrt{\dfrac{(m^{2}+1)^{2} - 4m^{2}}{(m^{2}+1)^{2}}}}

\sf{(a + b)^{2} - 4ab = (a - b)^{2}}

\sf{So \: ,}

\sf{CosA =\sqrt{\dfrac{(m^{2}-1)^{2}}{(m^{2}+1)^{2}}}}

\sf{CosA =\sqrt{[\dfrac{(m^{2} - 1)}{(m^{2}+1)}]^{2}}}

\sf{CosA =\dfrac{(m^{2} -1)}{(m^{2}+1)}}

\sf{HENCE \: PROOF}

Similar questions