Math, asked by chandulumedhulu, 3 months ago

please answer the question​

Attachments:

Answers

Answered by thkulsum812
0

Answer:

(a) the area of the remaining sheet is 536cm^2

Answered by BrainlyRish
3

Question -:

  • a ) From a circular card sheet of radius 14 cm two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1 cm are removed (as shown in figure) . Find the area of the remaining sheet .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given :

  • Radius of big circle (R) = 14cm
  • radius of small (r) = 3.5cm
  • Length of rectangle = 3cm
  • Breadth of rectangle= 1cm

Need To Find :

  • Area of Remaining sheet .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Solution:−

\underline {\boxed {\sf{ Area\ of\ rectangle= Length\times breadth}}}\\ \\ \underline {\boxed {\sf{Area\ of\ circle = \pi r^2}}}

⠀⠀⠀⠀⠀We have to find the Area of remaining sheet

Now ,

:\implies\sf\ Remaining\ Area= \pi R^2-(2\pi r^2+\ell \times b)\\ \\ \\ :\implies\sf\ Area= \dfrac{22}{\cancel{7}}\times 14\times \cancel{14}-\Big(2\times \dfrac{22}{\cancel{7}}\times \cancel{3.5}\times 3.5+ 3\times 1\Big)\\ \\ \\ :\implies\sf\ Remaining\ Area= 22\times 14\times 7-\Big( 2\times 0.5\times 3.5\times22 +3\Big)\\ \\ \\ :\implies\sf\ Remaining\ Area=616 -\Big(77+3\Big)\\ \\ \\ :\implies\sf\ Remaining\ Area= 616-80\\ \\ \\ :\implies\underline{\boxed{\sf\ Remaining\ Area=536cm^2}}

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Area \:of\:Remaining \:sheet\:is\:\bf{536\: cm^{2}}}}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Question -:

  • b ) How many times will wheel of radius 14cm have to rotate to cover a distance of 22 metre .

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Given :

  • The Radius of Wheel (r) is 14 cm .
  • The Distance need to cover is 22 m .

Need To Find :

  • How many Rotation will take to cover Given distance.

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Solution -:

:\underline {\boxed {\sf{ Circumference \ of\ Circle = Distance \:Covered \;in\;1 \:rotation }}}

⠀⠀⠀⠀⠀We have to find how many Rotation will it take to cover 22 m or 2200 cm [ 1 m = 100 cm ]

As , We know that ,

  • \underline {\boxed {\sf{ Perimeter \ of\ circle = 2\pi r}}}

Now ,

:\implies\sf\ \ Circumference =2 \pi R \\ \\ \\ :\implies\sf\ Circumference = 2 \times \dfrac{22}{\cancel{7}}\times  \cancel{14}\\ \\ \\ :\implies\sf\ \ Circumference =  2 \times 22 \times 2 \\ \\ \\ :\implies\sf\ \ Circumference= 44 \times 2 \\ \\ \\ :\implies\underline{\boxed{\sf\ Circumference \ =88cm}}

As, We know that ,

:\underline {\boxed {\sf{ Circumference \ of\ Circle = Distance \:Covered \;in\;1 \:rotation }}}

Therefore,

  • Distance Covered in 1 rotation = 88 cm

⠀⠀⠀⠀⠀We have to find how many Rotation will it take to cover 22 m or 2200 cm

\underline {\boxed {\sf{ No. \:of \:Rotation = \dfrac{Distance \:Need\:To\:Cover\:}{Distance \:in\:1\:Rotation}}}}\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

:\implies \sf{ No. \:of \:Rotation = \dfrac{2200\:}{88}}\\\\ :\implies\sf{No.\:of\:Rotations\:= \:25}\\

Therefore,

⠀⠀⠀⠀⠀\therefore {\underline{ \mathrm {  Number \:of\:Rotation \:is\:\bf{25\:} }}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions