English, asked by Sadhana4748, 3 months ago

please answer the question​

Attachments:

Answers

Answered by gouravgo986
2

I hope this was helpful to your life

Attachments:
Answered by Anonymous
0

Given :–

  •  \sf\dfrac{x+3}{x+2}=  \dfrac{3x-7}{2x-3}\\

To Find :–

  • Value of 'x'

Solution :–

 \\\:  \:  \:  \:  \:  \: \red{ \::\implies \sf  \dfrac{x+3}{x+2}=  \dfrac{3x-7}{2x-3}}\\

 \\\:  \:  \:  \:  \:  \:  \::\implies \sf (x + 3)(2x - 3) = (3x - 7)(x + 2)\\

 \\\:  \:  \:  \:  \:  \:  \::\implies \sf 2 {x}^{2} - 3x + 6x - 9=3 {x}^{2} + 6x - 7x - 14\\

 \\\:  \:  \:  \:  \:  \:  \::\implies \sf 2 {x}^{2}  + 3x- 9=3 {x}^{2}  - x- 14\\

 \\\:  \:  \:  \:  \:  \:  \::\implies \sf 2 {x}^{2}  + 3x- 9 - 3 {x}^{2} + x + 14 = 0\\

 \\\:  \:  \:  \:  \:  \:  \::\implies \sf  - {x}^{2}  + 4x + 5= 0\\

 \\\:  \:  \:  \:  \:  \:  \::\implies \sf {x}^{2} - 4x - 5= 0\\

 \\\:  \:  \:  \:  \:  \:  \::\implies \sf {x}^{2} - 5x + x - 5= 0\\

 \\\:  \:  \:  \:  \:  \:  \::\implies \sf x(x - 5) + 1(x  - 5)= 0\\

 \\\:  \:  \:  \:  \:  \:  \::\implies \sf (x + 1)(x - 5)= 0\\

 \\\:  \:  \:  \:  \:  \:  \::\implies \boxed{ \sf x = 5, - 1}\\

Similar questions