Math, asked by amishshetty15, 19 days ago

Please answer the question

Attachments:

Answers

Answered by palak7693
0

Answer:

I am really sorry I don't know

Answered by MrSovereign
4

Given:-

  • AB || DC
  • Value of x =  \frac{4y}{3}
  • Value of y =  \frac{3z}{8}

To Find:-

  • Value of ∠BCD
  • Value of ∠ABC
  • Value of ∠BAD

Required Response:-

As, AB || DC & BD as transversal

∠DBC = ∠ADB [Alternative Interior Angles]

y = 36°

  • y = 36°

→\;y = 36 \\ →\; \frac{3z}{8}  = 36 \\ →\;3z = 36 \times 8 \\→\; z =  \frac{\cancel{36} \times 8}{\cancel{3}}  \\→\; z = 12 \times 8 \\➝ \;z = 96

  • z = 96°

By Substituting Value of "y" in Equation x

→\; \frac{4y}{3}  \\ →\; \frac{4 \times 36}{3}  \\→\: 4 \times 12 \\➝\; 48

  • x = 48°

As Angle ABC = x+y

→\;{\sf{∠ABC = 36°+48°}}

➝\;{\sf{∠ABC = 84°}}

WKT

Sum of Angles in a triangle measure 180°

In ∆ABD

→\;{\sf{∠ABD+∠BDA+∠BAD = 180°}}

→\;{\sf{x+36°+∠BAD = 180°}}

→\;{\sf{48°+36°+∠BAD = 180°}}

→\;{\sf{∠BAD = 180°-84°}}

➝\;{\sf{∠BAD = 96°}}

  • \pink{\bold{∠BCD = 96°}}
  • \blue{\bold{∠ABC = 84°}}
  • \green{\bold{∠BAD = 96°}}

\boxed{\tt{@MrSoverign}}

Hope It Helps You ✌️

Similar questions