Math, asked by alishbafatima951, 2 months ago

please answer the question ​

Attachments:

Answers

Answered by Anonymous
17

Answer :

{\dfrac{\log\sqrt{27} + \log 8 + \log \sqrt {1000}}{\log 120} = \dfrac{3}{2}}

Step-by-step explanation:

We have,

{ \implies\dfrac{\log\sqrt{27} + \log 8 + \log \sqrt {1000}}{\log 120}}

{ \implies\dfrac{\log(\sqrt{3})^{3} + \log (2)^{3}  + \log (\sqrt {10})^{3} }{\log ( {2}^{2}  \times 3 \times 10)}}

We are aware about the log properties,

  •  \boxed{  \rm\log {x}^{y}  = y \log x}
  •  \boxed{  \rm\log mn =  \log m  +  \log n}

So, by using these properties, we get the following expressions.

{ \implies\dfrac{3\log(\sqrt{3})+ 3\log (2) +3 \log (\sqrt {10})}{\log ( {2}^{2})   +  \log( 3 ) +  \log (10)}}

{ \implies\dfrac{3\log(\sqrt{3})+ 3\log (2) +3 \log (\sqrt {10})}{\log ( {2})^{2}    +  \log(  \sqrt{3}  )^{2}  +  \log ( \sqrt{10})^{2}  }}

{ \implies\dfrac{3\log(\sqrt{3})+ 3\log (2) +3 \log (\sqrt {10})}{2\log ( {2})   + 2 \log(  \sqrt{3}  )  +  2\log ( \sqrt{10})  }}

{ \implies\dfrac{3(\log(\sqrt{3})+ \log (2) + \log (\sqrt {10}))}{2(\log ( {2})   + \log(  \sqrt{3}  )  +\log ( \sqrt{10}))  }}

Now, we can cancel out the same log expressions from num. and deno., By cancellation, we get the followings.

{ \implies\dfrac{3}{2}}

Hence this is the required answer.

Answered by mathdude500
11

Given Question :-

Evaluate the following

{\dfrac{\log\sqrt{27} + \log 8 + \log \sqrt {1000}}{\log 120}}

\large\underline{\sf{Solution-}}

Consider,

\rm :\longmapsto\:{\dfrac{\log\sqrt{27} + \log 8 + \log \sqrt {1000}}{\log 120}}

Let first evaluate numerator

Consider,

\rm :\longmapsto\:\log\sqrt{27} + \log 8 + \log  \sqrt{1000}

We know,

\boxed{ \tt{ \: logm \:  + logn \:  =  \: log(mn) \: }}

So, using this identity, we get

\rm \:  =  \:log\bigg[ \sqrt{27}  \times 8 \times  \sqrt{1000} \bigg]

\rm \:  =  \:log\bigg[ \sqrt{3 \times 3 \times 3}  \times 8 \times  \sqrt{10 \times 10 \times 10} \bigg]

\rm \:  =  \:log\bigg[ 3 \sqrt{3}  \times 8 \times 10 \sqrt{10}  \bigg]

\rm \:  =  \:log\bigg[ 240 \sqrt{30}  \bigg]

\rm \:  =  \:log\bigg[ 120 \times 2 \times  \sqrt{30}  \bigg]

\rm \:  =  \:log\bigg[ 120 \times  \sqrt{4}  \times  \sqrt{30}  \bigg]

\rm \:  =  \:log\bigg[ 120 \times  \sqrt{4 \times 30}  \bigg]

\rm \:  =  \:log\bigg[ 120 \times  \sqrt{120}  \bigg]

\rm \:  =  \:log\bigg[ 120\bigg]^{1 + \dfrac{1}{2} }

\rm \:  =  \:log\bigg[ 120\bigg]^{ \dfrac{2 + 1}{2} }

\rm \:  =  \:log\bigg[ 120\bigg]^{ \dfrac{3}{2} }

We know,

\boxed{ \tt{ \: log {x}^{y} = y \: logx \: }}

So, using this identity, we get

\rm \:  =  \:\dfrac{3}{2} \: log(120)

So,

\:\boxed{ \tt{ \: \log\sqrt{27} + \log 8 + \log  \sqrt{1000}  = \dfrac{3}{2} \: log(120) \: }}

Now, Consider,

 \red{\rm :\longmapsto\:{\dfrac{\log\sqrt{27} + \log 8 + \log \sqrt {1000}}{\log 120}}}

\rm \:  =  \:\dfrac{\dfrac{3}{2} \:  \cancel{log120}}{ \cancel{log120}}

\rm \:  =  \:\dfrac{3}{2}

Hence,

 \red{\rm :\longmapsto\:\boxed{ \tt{ \: {\dfrac{\log\sqrt{27} + \log 8 + \log \sqrt {1000}}{\log 120}}} =  \frac{3}{2}}}

More to know :-

\boxed{ \tt{ \:  log_{x}(x) = 1 \: }}

\boxed{ \tt{ \:  log_{ {x}^{y} }( {x}^{z} ) =  \frac{z}{y} \: }}

\boxed{ \tt{ \:  {e}^{logx} = x \: }}

\boxed{ \tt{ \:  {e}^{y \: logx} =  {x}^{y}  \: }}

\boxed{ \tt{ \:  {a}^{ log_{a}(x) }  = x \: }}

\boxed{ \tt{ \:  {a}^{y log_{a}(x) }  =  {x}^{y}  \: }}

Similar questions