Math, asked by pratikbabasahebmehet, 1 year ago

please answer the question,??​

Attachments:

Answers

Answered by GUYINSANE
0

surface \: area \: of \: sphere \:  = surface \: area \: of \: cube \\  =  > 4\pi {r}^{2}  = 6 {l}^{2}  \\  =  >  \frac{4}{6}  =  \frac{ {l}^{2} }{\pi {r}^{2} }  \\  =  >  \frac{2}{3}  =  \frac{ {l}^{2} }{\pi {r}^{2} }  \: (equation \:1) \\ from \: question \\  \frac{ ({ \frac{4}{3}\pi {r}^{3}})^{2}   }{ { ({l}^{3}) }^{2} }  =  \frac{k}{\pi}  \\  =  >  \frac{ \frac{16 {\pi}^{2} {r}^{6}  }{9} }{ {l}^{6} }  =  \frac{k}{\pi}  \\  =  > k {l}^{6}  =  \frac{16 {\pi}^{3}  {r}^{6} } {9} \\  =  > k =  \frac{16}{9}  \times  \frac{ {\pi}^{3}  {r}^{6} }{ {l}^{6} }  \\  =  > k =  \frac{16}{9}  \times   { (\frac{\pi {r}^{2} }{ {l}^{2} } })^{3}  \\  =  > k =  \frac{16}{9}  \times  ({\frac{3}{2} })^{3} (from \: equation \: 1) \\    =  > k =  \frac{16}{9}  \times  \frac{27}{8} \\  =  > k = 6

Similar questions