please answer the question above
Attachments:
Answers
Answered by
0
Answer:
x=\frac{1}{2-\sqrt{3}}
Multiply the numerator and denominator by the conjugate of the denominator
x=\frac{1}{2-\sqrt{3}}\cdot\frac{2+\sqrt{3}}{2+\sqrt{3}}=\frac{2+\sqrt{3}}{2^2-\sqrt{3}^2}=\frac{2+\sqrt{3}}{4-3}=2+\sqrt{3}
\implies\,x^2=(2+\sqrt{3})^2=4+4\sqrt{3}+3=7+4\sqrt{3}
Now consider the given expression
x^3-2x^2-7x+5\\=x^3-7x-2x^2+5\\=x(x^2-7)-2x^2+5\\=(2+\sqrt{3})(7+4\sqrt{3}-7)-2(7+4\sqrt{3})+5\\=(2+\sqrt{3})(4\sqrt{3})-14-8\sqrt{3}+5\\=8\sqrt{3}+12-14-8\sqrt{3}+5\\=\boxed{3}
Step-by-step explanation:
Similar questions