Math, asked by piyushbd28, 2 months ago

Please answer the question
and don't spam​

Attachments:

Answers

Answered by abhinavmike85
25

\\\\\huge{⚝} \\\\\huge{\underline{\mathcal{Answer}}}

\\\huge{☞}\\\sf{k = 2}

\\\\\huge{⚝} \\\\\huge{\underline{\mathcal{Given:}}}

f(x)  =  \begin{cases} \dfrac{\sin 5x}{x^2+2x}  & \text{, } x \neq 0 \\ k+\dfrac{1}{2}  & \text{, x = 0}\end{cases}

is continuous at x = 0.

\\\\\huge{⚝} \\\\\huge{\underline{\mathcal{To Find:}}}

\huge{→}Value of k

\\\\\huge{⚝} \\\\\huge{\underline{\mathcal{Steps}}}

Here, f(0) = k + \dfrac{1}{2}

\\\\

First we will calculate for 0^{-}:

\\\large{⇒}\\\lim_{x\to {0}^{ - } }f(x) = \lim_{x\to {0}^{ - } } \:  \dfrac{\sin \: 5x}{ {x}^{2} + 2x }\\

\\\large{⇒}\\ \lim_{x\to {0}^{ - } }f(x) =\lim_{x\to {0}^{ - } } \dfrac{5 \times \sin5x}{5 \times x(x + 2)}  \\

\\\large{⇒}\\\lim_{x\to {0}^{ - } }f(x) = \lim_{x\to {0}^{ - } } \dfrac{5}{x + 2}  \times \lim_{x\to {0}^{ - } } \dfrac{ \sin5x }{5x} \\

\\\large{⇒} \\\lim_{x\to {0}^{ - } }f(x) = \lim_{x\to {0}^{ - } } \dfrac{5}{x + 2}  \times 1\\

\\\large{⇒}\\\lim_{x\to {0}^{  -  } }f(x) =\lim_{x\to {0}^{  - } } \dfrac{5}{x  + 2} \\

\\\large{⇒}\\\lim_{x\to {0}^{  - } }f(x) = \dfrac{5}{0 + 2}\\

\\\large{⇒} \\\lim_{x\to {0}^{ -} }f(x) = \dfrac{5}{2}\\\\

Now we will calculate for 0^{+}

\\\large{⇒}\\\lim_{x\to {0}^{  +  } }f(x) = \lim_{x\to {0}^{  +  } } \:  \dfrac{\sin \: 5x}{ {x}^{2} + 2x }\\

\\\large{⇒}\\\lim_{x\to {0}^{  + } }f(x) =\lim_{x\to {0}^{  + } } \dfrac{5 \times \sin5x}{5 \times x(x + 2)}\\

\\\large{⇒}\\\lim_{x\to {0}^{  + } }f(x) = \lim_{x\to {0}^{ + } } \dfrac{5}{x + 2}  \times \lim_{x\to {0}^{ +  } } \dfrac{ \sin5x }{5x}\\

\\\large{⇒}\\ \lim_{x\to {0}^{  + } }f(x) = \lim_{x\to {0}^{  + } } \dfrac{5}{x + 2}  \times 1\\

\\\large{⇒}\\ \lim_{x\to {0}^{  + } }f(x) = \lim_{x \to {0}^{  + } } \dfrac{5}{x  + 2}\\

\\\large{⇒} \\\lim_{x\to {0}^{  + } }f(x) = \dfrac{5}{0 + 2}\\

\\\large{⇒}\\\lim_{x\to {0}^{  + } }f(x) = \dfrac{5}{2}\\\\

For f(x) to be continuous at x = 0,

\large{⇒}\lim_{x\to {0}^{  -  } } =  \lim_{x\to {0}^{   +   } } =  \lim_{x\to 0}\\

\\\large{⇒} \\\lim_{x\to {0}^{  -  } } =  \lim_{x\to {0}^{   + } } =  \dfrac{5}{ 2}\\

\\\large{⇒}\\ \lim_{x\to {0}^{  -  } } =  \lim_{x\to{0}}\\

\\\large{⇒}\\ \lim_{x\to {0}^{  -  } } =  k +  \dfrac{1}{2}\\

\\\large{⇒}\\ \dfrac{5}{2}  = k +  \dfrac{1}{2}\\

\\\large{⇒}\\ \dfrac{5}{2}  -  \dfrac{1}{2}  = k \\

\\\large{⇒}\\ k =  \dfrac{4}{2}\\

\large{⇒} k = 2

\\\\\fbox{\fbox{\fbox{\fbox{\huge{\underline{\underline{\sf{\green{Hope\:it\:helps}}}}}}}}}

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\begin{gathered}\begin{gathered}\bf\: \rm :\longmapsto\:f(x) = \begin{cases} &\sf{\dfrac{sin5x}{ {x}^{2}  + 2x} , \:  \:  \: x \:  \ne \:  0}  \\ \\ &\sf{k \:  +  \: \dfrac{1}{2} , \:  \:  \: x \:  =  \: 0} \end{cases}\end{gathered}\end{gathered}

is continuous at x = 0.

Consider,

\rm :\longmapsto\:f(0) = k + \dfrac{1}{2}

Now,

Consider,

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \tt f(x)}

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0} \tt \dfrac{sin5x}{ {x}^{2}  + 2x}

If we substitute directly x = 0, we get indeterminant form.

So,

can be further rewritten as

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0} \tt \dfrac{sin5x}{ x \: ({x}  + 2)}

can be rewritten as

\rm \:  =  \:  \: \displaystyle\lim_{x \to 0} \tt \dfrac{1}{x + 2} \times \displaystyle\lim_{x \to 0} \tt \dfrac{sin5x}{x}

\rm \:  =  \:  \: \tt \dfrac{1}{0+ 2} \times \displaystyle\lim_{x \to 0} \tt \dfrac{sin5x}{5x}  \times 5

We know,

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \tt  \frac{sinx}{x} = 1}}

So, using this, we get

\rm \:  =  \:  \: \dfrac{1}{2}  \times 1 \times 5

\rm \:  =  \:  \: \dfrac{5}{2}

So,

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \tt f(x) \:  =  \: \dfrac{5}{2} }

Now,

We know, A function f(x) is said to be continuous at x = a, iff

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to a} \tt f(x) = f(a)}

Now, According to statement, it is given that function f(x) is continuous at x = 0.

So,

\red{\rm :\longmapsto\:\displaystyle\lim_{x \to 0} \tt f(x) = f(0)}

\rm :\longmapsto\:\dfrac{5}{2}  = k + \dfrac{1}{2}

\rm :\longmapsto\:k \:  =  \: \dfrac{5}{2} -  \dfrac{1}{2}

\rm :\longmapsto\:k \:  =  \: \dfrac{5 - 1}{2}

\rm :\longmapsto\:k \:  =  \: \dfrac{4}{2}

\bf\implies \:k \:  =  \: 2

  • So, Option (1) is correct

Additional Information :-

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \tt  \frac{sinx}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \tt  \frac{tanx}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \tt  \frac{log(1 + x)}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \tt  \frac{ {e}^{x}  - 1}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \tt  \frac{ {a}^{x}  - 1}{x} = loga}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \tt  \frac{sin^{ - 1} x}{x} = 1}}

\boxed{ \rm{ \displaystyle\lim_{x \to 0} \tt  \frac{tan^{ - 1} x}{x} = 1}}

Similar questions