please answer the question as fast as possible I will mark you as Brainliest...
Attachments:
Answers
Answered by
1
Step-by-step explanation:
LHS:
tanA/(1-cotA) + cotA/(1-tanA)
put tanA=sinA/cosA and cotA=cosA/sinA
= sin^2A/cosA(sinA-cosA) + cos^2A/sinA(cosA-sinA)
=sin^2A/cosA(sinA-cosA) - cos^2A/sinA(sinA-cosA)
Taking LCM
= (sin^3A-cos^3A)/sinAcosA(sinA-cosA)
We know that a^3-b^3=(a-b)(a^2+ab+b^2)
=(sinA-cosA)(sin^2A+cos^2A+sinAcosA)/sinAcosA(sinA-cosA)
(sinA-cosA) of the numerator and the denominator cancel each other.
Also, sin^2A + cos^2A = 1
= (1+sinAcosA)/sinAcosA
= 1/sinAcosA + sinAcosA/sinAcosA
=cosecAsecA+1
RHS:
1+tanA+cotA
=1+sinA/cosA+cosA/sinA
Taking LCM
=(sinAcosA+sin^2A+cos^2A)/sinAcosA
=(sinAcosA+1)/sinAcosA
=1+cosecAsecA
=cosecAsecA+1
LHS=RHS
Hence proved
Hope this answer helps you:)
Similar questions