Math, asked by panduranga46, 1 year ago

Please answer the Question

don't spam​

Attachments:

LALITMOHANMUNJAL: you do rationalise
BrainlyMegaStar: yes

Answers

Answered by AbhijithPrakash
3

Answer:

see the explanation

Step-by-step explanation:

\sqrt{\frac{\mathtt{1 - cos \theta}}{\mathtt{1 + cos \theta}}}

By multiplying L.H.S. and R.H.S. with [1 - cosθ]. We get,

\implies \sqrt{\frac{(1-cos\theta )}{(1+cos\theta)} \times \frac{( 1 - cos\theta)}{(1-cos\theta)}}

\implies \sqrt{\frac{(1-cos\theta )^2}{(1- cos^2 \theta )}}

\implies \sqrt{\frac{(1-cos\theta )^2}{(sin^2\theta)}}

\implies \frac{(1 - cos\theta)}{(sin\theta)}

\implies (\frac{1}{sin\theta} ) - (\frac{cos\theta}{sin\theta})

\implies \underline{\bold{cosec\theta - cot\theta}}

                                             Hence Proved.

Answered by adityachoudhary2956
0

☺❀good evening❀☺

☆AnSwErs ☆ :

❤❤THANKS❤❤

Attachments:
Similar questions