Math, asked by abhishikth78, 7 months ago

Please answer the question fast​

Attachments:

Answers

Answered by aishwaryabaisa
1

Answer:

a option

Step-by-step explanation:

hope you get your answer

Answered by rohitraj68577
1

Answer:

\green{\therefore \bigg( {2x}^{2}  +  \frac{1}{3 {x}^{2} }  \bigg)^{2} =  {4x}^{4}  +  \frac{1}{9 {x}^{4} }  + \frac{4}{3}} \\

Step-by-step explanation:

 \to  \bigg( {2x}^{2}  +  \frac{1}{3 {x}^{2} }  \bigg)^{2}  \\  \\   \bold{ {(a + b)}^{2}  =  {a}^{2} +  {b}^{2} + 2ab}   \\  \\ \to ( {2x}^{2} )^{2}  +   \bigg(\frac{1}{3 {x}^{2}  } \bigg) ^{2}  + 2 \times  {2x}^{2}  \times  \frac{1}{3 {x}^{2} }  \\  \\ \to 4 {x}^{4}  +  \frac{1}{9 { x }^{4} }  + \frac{4}{3} \\  \\   \green{\therefore \bigg( {2x}^{2}  +  \frac{1}{3 {x}^{2} }  \bigg)^{2} =  {4x}^{4}  +  \frac{1}{9 {x}^{4} }  + \frac{4}{3}}

Similar questions