Math, asked by penumakaswarupa, 6 days ago

please answer the question for me​

Attachments:

Answers

Answered by mathdude500
9

Question :-

Evaluate the following :-

\rm \:  \: \displaystyle\lim_{x \to 1}\rm  \frac{sin(x - 1)}{ {x}^{2}  - 1}  \\

\large\underline{\sf{Solution-}}

Given expression is

\rm \:  \: \displaystyle\lim_{x \to 1}\rm  \frac{sin(x - 1)}{ {x}^{2}  - 1}  \\

If we substitute directly x = 1, then we get

\rm \:  =  \:   \frac{sin(1 - 1)}{ {1}^{2}  - 1}  \\

\rm \:  =  \:   \frac{sin0}{ 1 - 1}  \\

\rm \: =  \: \dfrac{0}{0}  \\

which is indeterminant form.

So, Consider again

\rm \:  \: \displaystyle\lim_{x \to 1}\rm  \frac{sin(x - 1)}{ {x}^{2}  - 1}  \\

can be rewritten as

\rm \:  \: \displaystyle\lim_{x \to 1}\rm  \frac{sin(x - 1)}{ (x  +  1)(x - 1)}  \\

can be further rewritten as

\rm \: =   \:\displaystyle\lim_{x \to 1}\rm  \frac{1}{x + 1}   \times \displaystyle\lim_{x \to 1}\rm  \frac{sin(x - 1)}{ x - 1}  \\

\rm \: =    \:   \dfrac{1}{1 + 1}   \times \displaystyle\lim_{x  - 1\to 0}\rm  \frac{sin(x - 1)}{ x - 1}  \\

We know,

\boxed{\sf{  \: \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{sinx}{x}  \:  =  \: 1 \:  \: }} \\

So, using this result, we get

\rm \: =  \: \dfrac{1}{2}  \times 1 \\

\rm \: =  \: \dfrac{1}{2} \\

Hence,

\boxed{\sf{  \:\rm \:  \: \displaystyle\lim_{x \to 1}\rm  \frac{sin(x - 1)}{ {x}^{2}  - 1} \:  =  \:  \frac{1}{2} \:  \: }}   \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \: \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{sinx}{x}  \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \: \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{tanx}{x}  \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \: \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{log(1 + x)}{x}  \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \: \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {e}^{x}  - 1}{x}  \:  =  \: 1 \:  \: }} \\

\boxed{\sf{  \: \: \displaystyle\lim_{x \to 0}\rm  \:  \frac{ {a}^{x}  - 1}{x}  \:  =  \: loga \:  \: }} \\

Answered by MysteriesGirl
104

\LARGE{\green{\boxed{\blue{\boxed{\orange{\boxed{\bf{\mathscr{\purple{๛Answer:-}}}}}}}}}}

Refer to the Attachment

________

Attachments:
Similar questions