Math, asked by SPECTACULARNAVPAV, 1 year ago

PLEASE ANSWER THE QUESTION IN THE ATTACHMENT

BRAINLIEST QUESTION

Attachments:

Answers

Answered by NancyLakra006
2
Please refer to your answer..
And if this helps mark brainiest
Attachments:

SPECTACULARNAVPAV: thanks
NancyLakra006: np :-)
Answered by siddhartharao77
1

Given : x = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}

On rationalizing, we get

=> \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} * \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} + \sqrt{2}}

=> \frac{(\sqrt{3} + \sqrt{2})^2}{(\sqrt{3})^2 - (\sqrt{2})^2}

=> \frac{(3 + 2 + 2\sqrt{6})}{3 - 2}

=> (3 + 2 + 2\sqrt{6})

-----------------------------------------------------------------------------------------------------------------

Now,

=> \frac{x - y}{x - 3y}

=> \frac{3 + 2 + 2\sqrt{6} - 1 }{3 + 2 + 2\sqrt{6} - 3}

=> \frac{4 + 2\sqrt{6}}{2 + 2\sqrt{6} }

=> \frac{2(2 + \sqrt{6})}{2(1 + \sqrt{6}) }

=> \frac{2 + \sqrt{6}}{1 + \sqrt{6}}

=> \frac{2 + \sqrt{6} }{ 1 + \sqrt{6} } * \frac{1 - \sqrt{6} }{1 - \sqrt{6} }

=> \frac{(2 + \sqrt{6})(1 - \sqrt{6})}{1 - (\sqrt{6})^2 }

=> \frac{2 - 2\sqrt{6} + \sqrt{6} - 6}{-5}

=> \frac{-4 - \sqrt{6}}{-5}

=> \frac{4 + \sqrt{6}}{5}


Therefore, the final answer is:

= > \boxed{\frac{4 + \sqrt{6}}{5}}



Hope this helps!

Similar questions