Math, asked by richards24050301, 19 days ago

please answer the question others will be reported ​

Attachments:

Answers

Answered by user0888
14

\large\text{$\boxed{\bold{[Topic:\ Factorization]}}$}

Notice this polynomial contains only biquadratic and quadratic terms. This polynomial is translated into the difference of perfect squares.

\large\text{$\boxed{\bold{[Step\ 1.]}}$}

Let's split the quadratic term.

\large\text{$\cdots\longrightarrow x^{4}+y^{4}-18x^{2}y^{2}=(x^{4}-2x^{2}y^{2}+y^{4})-16x^{2}y^{2}$}

\large\text{$\cdots\longrightarrow x^{4}+y^{4}-18x^{2}y^{2}=(x^{2}-y^{2})^{2}-(4xy)^{2}$}

\large\text{$\boxed{\bold{[Step\ 2.]}}$}

Then, we are done with the question.

\large\text{$\cdots\longrightarrow x^{4}+y^{4}-18x^{2}y^{2}=(x^{2}+4xy-y^{2})(x^{2}-4xy-y^{2})$}

\large\text{$\boxed{\bold{[Final\ answer]}}$}

\large\text{$\cdots\longrightarrow\boxed{x^{4}+y^{4}-18x^{2}y^{2}=(x^{2}+4xy-y^{2})(x^{2}-4xy-y^{2})}$}

Similar questions