Math, asked by ayush078616, 1 month ago

please Answer the question please who will answer I will give him brainleast​

Attachments:

Answers

Answered by rashi2623
1

Answer:

Given: area of square =5184m

2

∴ Side of square =

5184

=72m

The perimeter of square =4×72=288m

Let breadth of rectangle =xm

∴ Length of rectangle =2xm

Now, perimeter of rectangle= Perimeter of a square

⇒2(l+b)=288m

⇒2(2x+x)=288

⇒x=

6

288

=48m

∴ Length =2×48=96m, Breadth =48m

Therefore area of rectangle =l×b=96×48=4608m

2

Step-by-step explanation:

marked me as a brainlist and thanks to me

Answered by BrainlicaLDoll
8

\sf\bold{\underline{Given:}}

  • Area of square = \sf{5184{m}^{2}}
  • Perimeter of square is same as perimeter of square.
  • Length of rectangle is twice it's breadth.

\sf\bold{\underline{Formula\:used:}}

  • Side of square = \sf{ \sqrt{area\:of\:square}}
  • Perimeter of square = \sf{4 \times side}
  • Perimeter of rectangle = \sf{2(Length + Breadth)}
  • Area of rectangle = \sf{Length \times Breadth}

\sf\bold{\underline{Solution:}}

Let,

\longmapstoBreadth of rectangle (B)= x m

\longmapstoLength of rectangle (L) = 2x m

First, let us find perimeter of square using its area.

\sf\longmapsto{Area\:of\:square\:=\:5184 {m}^{2}}

\sf\longmapsto{Side\:of\:square\:=\: \sqrt{5184}=72m}

\sf\longmapsto{Perimeter\:of\:square\:=\: 4 \times 72 \:=\:288m}

According to the condition given in question that perimeter of square is equal to perimeter of rectangle.

\sf\longmapsto{\therefore\:Perimeter\:of\:rectangle\:=\:Perimeter\:of\:square}

\sf\longmapsto{2(L + B) = 288m}

\sf\longmapsto{2(2x + x) = 288m}

\sf\longmapsto{6x = 288m}

\sf\longmapsto{x =\dfrac{288m}{6}=48m}

\sf\longmapsto{Breadth\:of\:rectangle\:=\:x\:=48m}

\sf\longmapsto{Length\:of\:rectangle\:=\:2x\:=2 \times 48m\:=\:96m}

\sf\longmapsto{\therefore{Area\:of\:rectangle\:=\:L \times B \:=\: 96 \times 48 \:=\:4608 {m}^{2}}}

\sf\bold{\underline{Answer:}}

\sf\mapsto{Area\:of\:rectangle\:is\:4608 {m}^{2}}

Note: Swipe from right towards left to see the complete answer :)

@BrainlicaLDoll

Similar questions