Math, asked by jiyaagarwal81, 7 months ago

please answer the questions..................​

Attachments:

Answers

Answered by Intelligentcat
59

Answer:

\mathfrak{\huge{\orange{\underline{\underline{QuEsTiOn :}}}}}

If  log( \frac{x - y}{4} )  =  log( \sqrt{x} )  +  log( \sqrt{y} )

Show that,  {(x + y) }^{2}  = 20xy

\Large{\boxed{\underline{\overline{\mathfrak{\star \: AnSwer :- \: \star}}}}}

\Large{\underline{\underline{\bf{SoLuTion:-}}}}

 log( \frac{x - y}{4} )  =  log( \sqrt{x} )  +  log( \sqrt{y} )  \\  \\ log( \frac{x - y}{4} ) =  log( \sqrt{x} \times  \sqrt{y}  )  \\  \\  log( \frac{x - y}{4} ) =  log(  \sqrt{xy}  )  \\  \\  ( \frac{x - y}{4})  =  \sqrt{xy}  \\  \\

Squaring on both sides,

(x - y) ^{2}  =( 4 \sqrt{xy} ) ^{2}  \\  \\   {x}^{2}  +  {y}^{2}  - 2xy = 16xy \\  \\  {x}^{2}  +  {y}^{2}  = 18xy \\  \\  {x}^{2}  +  {y}^{2}  + 2xy = 18xy + 2xy \\  \\  {(x + y)}^{2}  = 20xy

Hence

proved that If  log( \frac{x - y}{4} )  =  log( \sqrt{x} )  +  log( \sqrt{y} )

then,  {(x + y) }^{2}  = 20xy

Similar questions