Math, asked by viviansamuel42, 1 year ago

Please answer the questions in the image. Thanks in advance​

Attachments:

Answers

Answered by Grimmjow
7

\mathsf{2.\;\;\;Given : 4cos\theta - 11sin\theta = 0}

\mathsf{\implies 11sin\theta = 4cos\theta}

\mathsf{\implies \dfrac{sin\theta}{cos\theta} = \dfrac{4}{11}}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{tan\theta = \dfrac{sin\theta}{cos\theta}}}}

\mathsf{\implies tan\theta = \dfrac{4}{11}}

\mathsf{Now,\;Consider : \dfrac{11cos\theta - 7sin\theta}{11cos\theta + 7sin\theta}}

\textsf{Dividing Numerator and Denominator of above fraction with \mathsf{cos\theta$}, We get :}

\mathsf{\implies \dfrac{\bigg(\dfrac{11cos\theta - 7sin\theta}{cos\theta}\bigg)}{\bigg(\dfrac{11cos\theta + 7sin\theta}{cos\theta}\bigg)}}

\mathsf{\implies \dfrac{{\bigg(\dfrac{11cos\theta}{cos\theta} - \dfrac{7sin\theta}{cos\theta}\bigg)}}{\bigg(\dfrac{11cos\theta}{cos\theta} + \dfrac{7sin\theta}{cos\theta}\bigg)}}

\mathsf{\implies \dfrac{{(11 - 7tan\theta)}}{(11 + 7tan\theta)}}

\mathsf{But,\;We\;found\;that : tan\theta = \dfrac{4}{11}}

\mathsf{\implies \dfrac{11 - 7\bigg(\dfrac{4}{11}\bigg)}{11 + 7\bigg(\dfrac{4}{11}\bigg)}}

\mathsf{\implies \dfrac{11 - \bigg(\dfrac{28}{11}\bigg)}{11 + \bigg(\dfrac{28}{11}\bigg)}}

\mathsf{\implies \dfrac{\bigg(\dfrac{121 - 28}{11}\bigg)}{\bigg(\dfrac{121 + 28}{11}\bigg)}}

\mathsf{\implies \dfrac{93}{149}}

----------------------------------------------------------------------------------------------------

\textsf{3.\;\;\;Given : 2sinA = 1}

\mathsf{\implies sinA = \dfrac{1}{2}}

\textsf{Now, Consider : secA - tanA}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{sec\theta = \dfrac{1}{cos\theta}}}}

\mathsf{\implies secA - tanA = \dfrac{1}{cosA} - \dfrac{sinA}{cosA}}

\mathsf{\implies secA - tanA = \dfrac{1 - sinA}{cosA}}

\bigstar\;\;\textsf{We know that : \boxed{\mathsf{sin^2\theta + cos^2\theta = 1}}}

\mathsf{\implies cos^2\theta = 1 - sin^2\theta}

\mathsf{\implies cos\theta = \pm\sqrt{1 - sin^2\theta}}

\mathsf{\implies secA - tanA = \pm\dfrac{1 - sinA}{\sqrt{1 - sin^2A}}}

\mathsf{\implies secA - tanA = \pm\dfrac{1 - \dfrac{1}{2}}{\sqrt{1 - \bigg(\dfrac{1}{2}\bigg)^2}}}

\mathsf{\implies secA - tanA = \pm\dfrac{\dfrac{1}{2}}{\sqrt{1 - \dfrac{1}{4}}}}

\mathsf{\implies secA - tanA = \pm\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{4 - 1}{4}}}}

\mathsf{\implies secA - tanA = \pm\dfrac{\dfrac{1}{2}}{\sqrt{\dfrac{3}{4}}}}

\mathsf{\implies secA - tanA = \pm\dfrac{\dfrac{1}{2}}{\dfrac{\sqrt{3}}{2}}}

\mathsf{\implies secA - tanA = \pm\dfrac{1}{\sqrt{3}}}


Anonymous: splendid !
Grimmjow: Thank you! :relaxed:
Similar questions