Math, asked by Anonymous, 11 months ago

please answer the questions please and explain it also! if you want brainlist so answer questions please!for 15 points.​​

Attachments:

Answers

Answered by tahseen619
12

Answer:

12%

Step-by-step explanation:

{\underline{{\text{Given}}}}

Principal(P) = Rs 5000

Time(t) = 2 yr

Difference between the Simple Interest(S.I) and

Compound Interest(C.I) = Rs 72

{\underline{{\text{To Find:}}}}

Rate of interest(r)

{\underline{{\text{Solution:}}}}

Let, the rate of interest be x % per annum.

In Case of Simple Interest,

 \text{S.I} = \dfrac{ Prt }{100}  \\  \\  =  \frac{5000 \times x \times 2}{100}  \\  \\  =  50x \times 2 \\  \\  = 100x

In Case of Compound Interest,

C.I =  P \{(1 + \frac{r}{100})^t-1\}\\   \\  = 5000\{(1 + \frac{x}{100})^2-1 \} \\  \\  = 5000(1 +  \frac{x}{100}  + 1)(1 +  \frac{x}{100}  - 1) \: [\text{using (a+b)(a-b)} =  {a}^{2} -  {b}^{2}  ] \\  \\  = 5000(2 +  \frac{x}{100} )( \frac{x}{100} ) \\  \\  = 50x(2 +  \frac{x}{100} ) \\  \\  = 100x +  \frac{50 {x}^{2} }{100}  \\  \\  = 100x +  \frac{ {x}^{2} }{2}

According to question,

C.I - S.I

 \implies (100x +  \frac{ {x}^{2} }{2} ) - (100x) = 72 \\  \\  \implies100x - 100x   + \frac{ {x}^{2} }{2}  = 72 \\  \\  \implies \frac{ {x}^{2} }{2}  = 72 \\  \\  \implies{x}^{2}  = 144 \\  \\  \implies {x}^{2}  =  {12}^{2}  \\  \\ \implies x = 12

Hence, The required rate of interest is 12% per

annum.

{\underline{{\text{Formula for Interest }}}}

 \text{S.I }=  \dfrac{Prt}{100}

Where,

P = Principal

r = rate of interest

t = time

S.I = Simple Interest

\text{C.I} = P \{{(1 +  \dfrac{r}{100})}^{t} - 1 \}

C.I = Compound Interest

Similar questions