Math, asked by Anonymous, 11 months ago

please answer the questions please and explain it also! if you want brainlist so answer questions please!

Attachments:

Answers

Answered by tahseen619
6

{\underline{{\text{Question}}}}

The simple interest and compound interest on a certain sum of money is Rs 400 and Rs 410 respectively for 2 yrs. find principal and rate of interest?

Step-by-step explanation:

{\underline{{\text{Given}}}}

Simple Interest (I) = Rs 400

Compound Interest (C.I) = Rs 410

Time (t) = 2 yr

{\underline{{\text{To Find:}}}}

Principal (P)

Rate of interest (r)

{\underline{{\text{Solution:}}}}

Let, the principal be Rs x and the rate of interest be y % per annum.

 \text{So, Simple Interest} = \frac{Prt}{100} \\  \\  =  \frac{x \times y \times 2}{100}  \\  \\   = \frac{2xy}{100} .........(i)

Again,

 \text{Compound Interest}= P \{(1+\dfrac{r}{100})^{t} - 1  \} \\  \\  = x \{(1+\dfrac{y}{100})^{2} - 1  \} \\  \\   = x (1+\dfrac{y}{100}  + 1 ) (1 +  \frac{y}{100}   - 1)  \\ \\ \text{[Using} \:  \:   {a}^{2}  -  { b}^{2}  = (a + b)(a - b)] \\  \\ =  x(2 +  \frac{y}{100} )( \frac{y}{100} ) \\  \\  =  \frac{xy}{100} (2 +  \frac{y}{100} ).......(ii)

Now, Dividing (ii) by (i) I get,

 \frac{\frac{xy}{100} (2 +  \frac{y}{100} )}{  \frac{2xy}{100} }  =  \frac{410}{400}  \\  \\  \frac{ \cancel\frac{xy}{100} (2 +  \frac{y}{100} )}{   \cancel\frac{2xy}{100} }  =  \frac{41 \cancel0}{40 \cancel0} \\  \\  \frac{(2 +  \frac{y}{100} )}{2}  =  \frac{41}{40}  \\  \\ 2 +  \frac{y}{100}  = 2 \times  \frac{41}{40}  \\  \\  \frac{y}{100}  =  \frac{82}{40}  - 2 \\  \\  \frac{y}{100}  =  \frac{2}{40}  \\  \\ \frac{y}{ \cancel{100}}  =  \frac{1}{ \cancel{20}} \\  \\ y = 5\%

Hence, the required rate of interest is 5% .

So,

 \frac{2xy}{100}  = 400 \\  \\  \frac{ 2 \times 5 \times x}{100}  = 400 \\  \\  \frac{10x}{100}  = 400  \\ \\ x = 4000 \times 10 \\  \\ x = 4000

Hence, the required Principal is Rs 4000.

{\underline{{\text{ Some Important Formula Of Interest }}}}

i)I =  \dfrac{ P rt}{100}

Where, I = Simple Interest

P = Principal

t = time

r = rate of interest

ii)C.I = P \{(1+\dfrac{r}{100})^{t} - 1  \}

Where, C.I = Compound Interest

Similar questions