Math, asked by manojpatel58, 1 month ago

please answer these both questions ​

Attachments:

Answers

Answered by ujjwal3266
0

Answer:

(i) a= 11/7 ,b=6/7

(ii) a=11 ,b=-6

Answered by CopyThat
6

Step-by-step explanation:

(1) \bold{\dfrac{3+\sqrt{2} }{3-\sqrt{2} }=a+b\sqrt{2}}

Rationalizing L.H.S :-

\rightarrow \bold{\dfrac{3+\sqrt{2} }{3-\sqrt{2}\ }\bold{\times\dfrac{3+\sqrt{2} }{3+\sqrt{2} } }}

\rightarrow \bold{\dfrac{(3+\sqrt{2})^2 }{(3+\sqrt{2})(3-\sqrt{2})  } }

We know :-

  • (a + b)² = a² + b² + 2ab
  • (a² - b²) = (a + b)(a - b)

Using them here :-

\rightarrow \bold{\dfrac{(3)^2+(\sqrt{2})^2+2(3)(\sqrt{2})  }{(3)^2-(\sqrt{2})^2 } }

\rightarrow \bold{\dfrac{9+2+6\sqrt{2} }{9-2} }

\rightarrow \bold{\dfrac{11+6\sqrt{2} }{7} }

\rightarrow \bold{\dfrac{11}{7}+\dfrac{6\sqrt{2} }{7}  }

\bold{\dfrac{11}{7}+\dfrac{6\sqrt{2} }{7}  } = \bold{a+b\sqrt{2} }

Comparing them we get,

  • \bold{a=\dfrac{11}{7} } and \bold{b=\dfrac{6}{7} }.

(2) \bold{\dfrac{5+2\sqrt{3} }{7+4\sqrt{3} } =a+b\sqrt{3} }

Rationalizing L.H.S :-

\rightarrow \bold{\dfrac{5+2\sqrt{3} }{7+4\sqrt{3} } \times\dfrac{7-4\sqrt{3} }{7-4\sqrt{3} } }

\rightarrow \bold{\dfrac{5(7-4\sqrt{3})+2\sqrt{3}(7-4\sqrt{3})   }{(7)^2-(4\sqrt{3})^2} }

\rightarrow \bold{\dfrac{35-20\sqrt{3}+14\sqrt{3}-24  }{49-48} }

\rightarrow \bold{\dfrac{11-6\sqrt{3} }{1} }

\bold{\dfrac{11-6\sqrt{3} }{1} =a+b\sqrt{3} }

Comparing then we get :-

  • \bold{a=11} and \bold{b=-6}.

...ッ

Similar questions