Math, asked by shrutiyadav1554, 2 months ago

please answer these it's very important for me ​

Attachments:

Answers

Answered by mahendra15aug
1

HOW TO SOLVE?

1.  \sqrt{(144 ){}^{ - 2} }  \\  \sqrt{ (\frac{1}{144}) {}^{2}  }  \\ ( (\frac{1}{144})  {}^{2})  {}^{ \frac{1}{2} }  \\  (\frac{1}{144}) {}^{2 \times  \frac{1}{2} }   \\ ( \frac{1}{144}) {}^{1}   =  \frac{1}{144}                2.\sqrt{(3) {}^{ - 2} }  =   \sqrt{( \frac{1}{3}) }  {}^{2}  \\ (( \frac{1}{3}) {}^{2})  {}^{ \frac{1}{2} }   \\ ( \frac{1}{3} )  {}^{2 \times  \frac{1}{2} }  \\ ( \frac{1}{3}  ) {}^{1}  =  \frac{1}{3}

HAVE A NICE DAY!!!

HOPE IT HELPS YOU!!!

Answered by BrainlyHoney
3

Hello mate :)

1 )

 \bf \dashrightarrow \sqrt{ {(144)}^{ - 2} }  \\  \\   \tt\implies \:  \sqrt{ { \frac{1}{144} }^{ 2} }  \\  \\  \tt\implies \:  \bigg(  { \frac{1}{144}\bigg) } ^{ \cancel2 \times  \frac{ 1}{ \cancel2} }  \\  \\  \tt \implies \:  \bigg( \frac{1}{ {12}^{2} }  \bigg) \\  \\  \tt \implies \:  \bigg(   \frac{1}{12} \bigg) ^{2} =  \red{\frac{1}{144} \: \: \green{ [Ans] }}

2)

 \dashrightarrow \bf \sqrt{(3)^{ - 2} } \\  \\  \tt \implies \sqrt{  \bigg(\frac{1}{3} \bigg) ^{2}  }  \\  \\ \tt \implies   {  \bigg(\frac{1}{3} \bigg) } ^{ \cancel2 \times  \frac{1}{ \cancel2} }  \\  \\   \tt \therefore \red{\frac{1}{3} \: \: \green{[Ans]}}

Hope this helps you :)

Similar questions