Please answer these question 28.
Attachments:
Answers
Answered by
0
x + y + z = 0
=> x + y = - z ----------(1)
On cubing both sides, we get
x^3 + y^3 + 3xy ( x +y) = - z^3
=> x^3 + y^3 + 3xy ( - z) = - z^3
=> x^3 + y^3 - 3xyz = - z^3
=> x^3 + y^3 + z^3 = 3xyz
=> x + y = - z ----------(1)
On cubing both sides, we get
x^3 + y^3 + 3xy ( x +y) = - z^3
=> x^3 + y^3 + 3xy ( - z) = - z^3
=> x^3 + y^3 - 3xyz = - z^3
=> x^3 + y^3 + z^3 = 3xyz
Answered by
0
Proof we know that
x³ + y³ + z³- 3xyz = ( x + y + c ) ( x² + y² + z² - xy - yz - zx )
Putting x + y + z = 0 on R.H.S ., we get
x³ + y³ + z³ - 3xyz = 0
x³ + y³ + z³ = 3xyz
x³ + y³ + z³- 3xyz = ( x + y + c ) ( x² + y² + z² - xy - yz - zx )
Putting x + y + z = 0 on R.H.S ., we get
x³ + y³ + z³ - 3xyz = 0
x³ + y³ + z³ = 3xyz
Similar questions