Math, asked by sheejaraninandanam, 6 hours ago

please answer these question

Attachments:

Answers

Answered by mathdude500
3

Given Question :-

In triangle ABC, AB = 7 cm, BC = 12 cm and angle B = 40°. Find

1. Area of triangle ABC

2. Length of AC.

Given that sin40° = 0.6428 and cos40° = 0.7660

\large\underline{\sf{Solution-}}

Let assume that the sides of triangle ABC is represented as

~ AB = c cm

~ BC = a cm

~ CA = b cm

Now, given that,

~ AB = c = 7 cm

~ BC = a = 12 cm

Now, we know that,

Area of triangle ABC is given by

\rm \:  =  \:\dfrac{1}{2}ac \: sinB

\rm \:  =  \:\dfrac{1}{2} \times 7 \times 12 \times \: sin40 \degree

\rm \:  =  \:7 \times 6 \times 0.6428

\rm \:  =  \:26.99  \: \approx \: 27 \:  {cm}^{2}

Now, To calculate the length of AC

We know,

~ By cosine Law

 \boxed{ \bf{ \: cosB =  \frac{ {a}^{2}  +  {c}^{2} -  {b}^{2}  }{2ac}}}

So, on substituting the values, we get

\rm :\longmapsto\:cos40 \degree \:  =  \: \dfrac{ {7}^{2}  +  {12}^{2}  -  {b}^{2} }{2 \times 7 \times 12}

\rm :\longmapsto\:0.766 = \dfrac{49 + 144 -  {b}^{2} }{168}

\rm :\longmapsto\:128.688 = 193 -  {b}^{2}

\rm :\longmapsto\:128.688 - 193 =  - {b}^{2}

\rm :\longmapsto\:  - {b}^{2}  =  - 64.312

\rm :\longmapsto\:  {b}^{2}  = 64.312

\bf\implies \:b = 8.038 \:  \approx \: 8.04 \: cm

Additional Information :-

 \boxed{ \bf{ \:  \frac{a}{sinA} =  \frac{b}{sinB} =  \frac{c}{sinC}}}

 \boxed{ \bf{ \: cosA =  \frac{ {b}^{2}  +  {c}^{2} -  {a}^{2}  }{2bc}}}

 \boxed{ \bf{ \: cosC =  \frac{ {b}^{2}  +  {a}^{2} -  {c}^{2}  }{2ab}}}

 \boxed{ \bf{ \: a = b \: cosC + c \: cosB}}

 \boxed{ \bf{ \: b = a \: cosC + c \: cosA}}

 \boxed{ \bf{ \: c = a \: cosB + b \: cosA}}

Similar questions