Math, asked by CandyCakes, 24 days ago

Please answer these(sums are ticked with pencil) ​

Attachments:

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-7}}

\rm :\longmapsto\:a + \dfrac{1}{a} = p

and

\rm :\longmapsto\:a  -  \dfrac{1}{a} = q

\rm :\longmapsto\: {(x + y)}^{2} -  {(x - y)}^{2} = 4xy

 \red{\rm :\longmapsto\:y \: by \: \dfrac{1}{a} \:  \:  \:  \: and  \:  \:  \:  \:  \: \: x \: by \: a}

\rm :\longmapsto\: {\bigg(a + \dfrac{1}{a} \bigg) }^{2} - {\bigg(a - \dfrac{1}{a} \bigg) }^{2} = 4 \times a \times \dfrac{1}{a}

\bf :\longmapsto\: {p}^{2} -  {q}^{2} = 4

\large\underline{\sf{Solution-8}}

\rm :\longmapsto\:\dfrac{ {a}^{2}  + 1}{a} = 4

\rm :\implies\:a + \dfrac{1}{a} = 4

On cubing both sides, we get

\rm :\longmapsto\:{\bigg(a + \dfrac{1}{a}\bigg) }^{3} =  {4}^{3}

\rm :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} } + 3 \times a \times \dfrac{1}{a}{\bigg(a + \dfrac{1}{a}\bigg) } = 64

\rm :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} } + 3  \times 4 = 64

\rm :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} } + 12 = 64

\rm :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} }  = 64 - 12

\rm :\longmapsto\: {a}^{3} + \dfrac{1}{ {a}^{3} }  = 52

On multiply by 2, on both sides, we get

\bf :\longmapsto\: {2a}^{3} + \dfrac{2}{ {a}^{3} }  = 104

\large\underline{\sf{Solution-9}}

\rm :\longmapsto\:x = \dfrac{1}{4 - x}

\rm :\longmapsto\:4 - x = \dfrac{1}{ x}

\rm :\longmapsto\:4  = \dfrac{1}{ x}  + x

On cubing both sides, we get

\rm :\longmapsto\:{\bigg(x + \dfrac{1}{x}\bigg) }^{3} =  {4}^{3}

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} } + 3 \times x \times \dfrac{1}{x}{\bigg(x + \dfrac{1}{x}\bigg) } = 64

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} } + 3  \times 4 = 64

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} } + 12= 64

\rm :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} }= 64 - 12

 \red{\bf :\longmapsto\: {x}^{3} + \dfrac{1}{ {x}^{3} }= 52}

On squaring both sides, we get

\rm :\longmapsto\:{\bigg( {x}^{3} + \dfrac{1}{ {x}^{3} } \bigg) }^{2} =  {52}^{2}

\rm :\longmapsto\: {x}^{6} + \dfrac{1}{ {x}^{6} } + 2 \times  {x}^{3} \times \dfrac{1}{ {x}^{3} } = 2704

\rm :\longmapsto\: {x}^{6} + \dfrac{1}{ {x}^{6} } + 2  = 2704

\rm :\longmapsto\: {x}^{6} + \dfrac{1}{ {x}^{6} } = 2704 - 2

 \red{\bf :\longmapsto\: {x}^{6} + \dfrac{1}{ {x}^{6} } = 2702}

\large\underline{\sf{Solution-10}}

\rm :\longmapsto\:x - \dfrac{1}{x} = 3 + 2 \sqrt{2}

\rm :\longmapsto\:{\bigg(x  -  \dfrac{1}{x}\bigg) }^{3} =  {(3 + 2 \sqrt{2}) }^{3}

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} } - 3 \times x \times \dfrac{1}{x}{\bigg(x - \dfrac{1}{x}\bigg) } = 27 + 16 \sqrt{2} + 18 \sqrt{2}(3 + 2 \sqrt{2})

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} } - 3(3 + 2 \sqrt{2})= 27 + 16 \sqrt{2} + 54 \sqrt{2} + 72

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} } - 9  - 6 \sqrt{2}= 99 + 70 \sqrt{2}

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} } = 9 + 6 \sqrt{2} + 99 + 70 \sqrt{2}

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} } = 108 + 76 \sqrt{2}

\rm :\longmapsto\: \dfrac{1}{4} \bigg({x}^{3} - \dfrac{1}{ {x}^{3} } \bigg) = 27 + 19 \sqrt{2}

\large\underline{\sf{Solution-11}}

\rm :\longmapsto\:x + \dfrac{1}{x} = 3 \dfrac{1}{3}

\rm :\longmapsto\:x + \dfrac{1}{x} =  \dfrac{10}{3}

\rm :\longmapsto\: {\bigg(x + \dfrac{1}{x} \bigg) }^{2} - {\bigg(x - \dfrac{1}{x} \bigg) }^{2} = 4 \times x \times \dfrac{1}{x}

\rm :\longmapsto\: {\bigg( \dfrac{10}{3} \bigg) }^{2} - {\bigg(x - \dfrac{1}{x} \bigg) }^{2} = 4

\rm :\longmapsto\: {\bigg( \dfrac{10}{3} \bigg) }^{2} - 4 = {\bigg(x - \dfrac{1}{x} \bigg) }^{2}

\rm :\longmapsto\: {\bigg( \dfrac{100}{9} \bigg) }- 4 = {\bigg(x - \dfrac{1}{x} \bigg) }^{2}

\rm :\longmapsto\: {\bigg( \dfrac{100 - 36}{9} \bigg) } = {\bigg(x - \dfrac{1}{x} \bigg) }^{2}

\rm :\longmapsto\: {\bigg( \dfrac{64}{9} \bigg) } = {\bigg(x - \dfrac{1}{x} \bigg) }^{2}

\rm :\longmapsto\: {\bigg( \dfrac{8}{3} \bigg) } = {\bigg(x - \dfrac{1}{x} \bigg) }

On cubing both sides, we get

\rm :\longmapsto\:{\bigg(x  -  \dfrac{1}{x}\bigg) }^{3} =  {\bigg( \dfrac{8}{3} \bigg) }^{3}

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} } - 3 \times x \times \dfrac{1}{x}{\bigg(x - \dfrac{1}{x}\bigg) } = \dfrac{512}{27}

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} } - 3  \times \dfrac{8}{3} = \dfrac{512}{27}

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} }  - 8 = \dfrac{512}{27}

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} }  = \dfrac{512}{27}  + 8

\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} }  = \dfrac{512 + 216}{27}

 \red{\rm :\longmapsto\: {x}^{3} - \dfrac{1}{ {x}^{3} }  = \dfrac{728}{27}}

Answered by mksinghudl78
1

Answer:

Hope it helps you...

❃.✮:▹ ◃:✮.❃❃.✮:▹ ◃:✮.❃❃.✮:▹ ◃:✮.❃

Attachments:
Similar questions