Please answer this 11th Trignometry ques
Answers
Answer:
( B ).
Step-by-step explanation:
Given expression is :
We know sine and cosine are periodic at 2π.
Therefore, ( now : solving in terms )
Continued : After solving( terms ) above expression looks like :
⇒ 3[ cos⁴α + sin⁴α ] - 2[ cos⁶α + sin⁶α ]
Expanding the term with 3 :
⇒ [ ( cos⁴α + sin⁴α ) + 2( cos⁴α + sin⁴α ) ] - 2[ cos⁶α + sin⁶α ]
⇒ ( cos⁴α + sin⁴α ) + 2[ cos⁴α + sin⁴ - cos⁶α - sin⁶α ]
⇒ ( cos⁴α + sin⁴α ) + 2[ cos⁴α - cos⁶α + sin⁴α - sin⁶α ]
⇒ ( cos⁴α + sin⁴α ) + 2[ cos⁴α( 1 - cos²α ) + sin⁴α( 1 - sin²α ) ]
⇒ ( cos⁴α + sin⁴α ) + 2[ cos⁴α.sin²α + sin⁴α.cos²α ]
⇒ ( cos⁴α + sin⁴α ) + 2cos²α.sin²α( cos²α + sin²α )
⇒ ( cos⁴α + sin⁴α ) + 2cos²α.sin²α( 1 ) { cos²A + sin²A = 1 }
⇒ cos⁴α + sin⁴α + 2cos²α.sin²α
Using a⁴ + b⁴ + 2a²b² = ( a² + b² )²
⇒ ( cos²α + sin²α )²
⇒ ( 1 )²
⇒ 1
Hence the required value of the given expression is 1.
Question :-
Solution :-
We have two brackets over here . We'll solve each one by one . So let's go through first one .
Now as we know that:-
As 3π/2 = 3(180/2)
= 3(90) = 270°
↭ Sin (90 - A ) = Cos A
( because all angles are positive in 1st quadrant )
↭ Sin ( 180 + A ) = - Sin A
3π = 540° .
As 3 π is odd value and we know odd valve of π is equal to 180°
( because sine is negative in 3rd quadrant )
And 3π/2 = 3(90)° , 3π = 3(180)°
So using these identities .
↭ Because both have even power then there negative sign will convert into positive sign .
This is equation 1st .
Now taking the second one .
Now as we know that :-
↭ Sin ( 90 + A) = - Cos (A)
( because cos is negative in second quadrant )
↭ Sin ( 180 - A ) = Sin A
( because sine is positive in third quadrant )
So using these identities :-
( because the power is even negative sign converted into positive one )
This is equation 2nd
Now adding both equations :-
Some more identities :-
↭ a³ + b³ = ( a + b ) ( a² - ab +b²)
↭ a² + b² = ( a+b)² - 2ab .
Here A = alpha .
3 [ ( cos² A)² + ( sin ²A)² ] - 2 [ ( cos²A)³ +( sin²A)³]
Applying the above mentioned identities .
3 [ ( cos²A + sin²A )² - 2 cos²A.sin²A ] -2 { ( cos²A+sin²A) [ ( cos²A)² - cos²A .sin²A +( sin²b)²] }
Sin²A + Cos²A = 1 .
3 [ (1)² - 2 cos²Asin²A ] -2 [ (1) (( cos²A )²+ (sin²A )² - cos²A . sin²A ]
Again implying a² + b² here
( 3 - 6 cos² A sin²A ) - 2 [ (cos²A + sin²A)² - 2cos²A. sin²A - cos²A . sin²A ]
( 3 - 6cos²A . sin²A ) - 2 [ 1 - 3 cos²A . sin²A ]
3 - 6 cos²A .sin²A - 2 +6 cos²A. sin²A
↭ 3 - 2 = 1
↭ So 1 is the answer