Math, asked by TheSatyam, 9 months ago

Please answer this!!!

Attachments:

Answers

Answered by StarrySoul
32

Solution :

  \longrightarrow \: \sf \dfrac{x - 4}{x - 5}  +  \dfrac{x - 6}{x - 7}  =  \dfrac{10}{3}

   \sf \: \longrightarrow  \dfrac{(x - 4)(x - 7) + (x - 6)(x - 5)}{(x - 5)(x - 7)}   =  \dfrac{10}{3}

 \sf  \longrightarrow  \dfrac{ {x}^{2}  - 7x - 4x + 28 +  {x}^{2} - 5x - 6x + 30 }{ {x}^{2}  - 7x - 5x + 35}  =  \dfrac{10}{ 3}

 \sf  \longrightarrow   \dfrac{2 {x}^{2}  - 22x + 58}{ {x}^{2} - 12x + 35 }  =  \dfrac{10}{3}

 \sf  \longrightarrow    \dfrac{ {x}^{2} - 11x + 29 }{ {x}^{2}  - 12x + 35}  =  \dfrac{5}{3}

 \sf  \longrightarrow    3( {x}^{2}  - 11x + 29) = 5( {x}^{2}  - 12x + 35)

 \sf  \longrightarrow    3 {x}^{2}  - 33x + 87 = 5 {x}^{2}  - 60x + 175

 \sf  \longrightarrow    2 {x}^{2}  - 27x + 88 = 0

 \sf  \longrightarrow    2 {x}^{2}  -16x  - 11x  + 88 = 0

 \sf  \longrightarrow    2x(x - 8) - 11(x  -  8) = 0

 \sf  \longrightarrow    (2x - 11)(x - 8) = 0

 \sf  \longrightarrow    2x - 11 = 0 \: or \: x - 8 = 0

 \sf  \longrightarrow x =  \purple{ \dfrac{11}{2}} \:  or \: x = \purple{ 8}


BloomingBud: cool!
StarrySoul: Thanksss! ❤️
Answered by MaIeficent
77

Step-by-step explanation:

{\red{\underline{\underline{\bold{Given:-}}}}}

  • \rm \frac{x - 4}{x - 5}  +  \frac{x - 6}{x - 7}  =  \frac{10}{3} ,

{\blue{\underline{\underline{\bold{To\:Find:-}}}}}

  • The value of x

{\green{\underline{\underline{\bold{Solution:-}}}}}

\rm\implies\dfrac{x - 4}{x - 5}  +  \dfrac{x - 6}{x - 7}  =  \dfrac{10}{3}

  \rm\implies\dfrac{(x - 4)(x - 7) + (x - 6)(x - 5)}{(x - 5)(x - 7)}  \frac{10}{3}

\rm\dfrac{ \big\{x(x - 7) -  4(x - 7)  \big \} \big\{x(x - 5) - 6(x - 5) \big \}}{ x(x - 7) - 5(x - 7)}  =  \dfrac{10}{3}

\rm\dfrac{ ({x }^{2}  - 11x + 28)   + ( {x}^{2} - 11x + 30) }{  {x}^{2} - 12x + 35 }  =  \dfrac{10}{3}

\implies \rm\dfrac{ {2x }^{2}  - 22x + 58  }{  {x}^{2} - 12x + 35 }  =  \dfrac{10}{3}

By cross multiplication :-

\implies \rm { 3({2x }^{2}  - 22x + 58)  } = 10({  {x}^{2} - 12x + 35 })

\implies \rm { {6x }^{2}  - 66 x + 174 } = {  {10x}^{2} - 120x + 350 }

\implies \rm { {6x }^{2}   { - 10x}^{2} - 66x +120x +  174  - 350 } =

\implies\rm { { - 4x }^{2}  + 54x  - 176} = 0

\implies - (\rm { { - 4x }^{2}  + 54x  - 176}) = 0

\implies\rm{ {  4x }^{2}   - 54x + 176} = 0

Dividing whole equation by 2

\implies\rm2 {x}^{2}  - 27x + 88 = 0

\implies \rm 2 {x}^{2}  - 16x  - 11x +  88 = 0

\rm \implies2x(x - 8) - 11(x - 8) = 0

\implies \rm(2x - 11)(x - 8) = 0

\boxed{ \implies \bf x =  \frac{ 11}{2}  \:  ,\:  \: 8}

Similar questions