Math, asked by kinjal340, 3 months ago

PLEASE ANSWER THIS....!! ​

Attachments:

Answers

Answered by Blossomfairy
5

Question :

If the perimeter of a triangular field is 144 m and ratio of the sides is 3:4:5, find the area of the field.

Given :

  • Ratio of the sides = 3:4:5
  • Perimeter of triangular field = 144 m

To find :

  • Area of the field

According to the question,

Let,

  • The side be 3x,4x and 5x.

We know,

  • Perimeter of triangle = Sum of all its side

⇒ Perimeter of triangle = Sum of all its side

⇒ 144 m = 3x + 4x + 5x

⇒ 144 m = 12x

⇒ 144 m ÷ 12 = x

⇒ 12 m = x

First side of triangle :

⇒ 3x

⇒ 3(12 m)

⇒ 36 m

Second side of triangle :

⇒ 4x

⇒ 4(12 m)

⇒ 48 m

Third side of triangle :

⇒ 5x

⇒ 5(12 m)

⇒ 60 m

  • So, the sides of triangle is 36 m,48 m and 60 m.

Now,

 \sf :  \implies{Semi  \: perimeter,s =  \dfrac{a + b + c}{2}  }

 \\

 \sf : \implies{ Semi  \: perimeter,s =  \dfrac{36  m+ 48 m+ 60m}{2} }

 \\

 \sf: \implies{Semi  \: perimeter ,s=  \dfrac{144m}{2}  \: \leadsto { \underline{ \boxed{ \sf{ \red{72m }}}}}}

Now,

 \sf:  \implies{Area \:  of  \: triangle  =  \sqrt{s(s - a)(s - b)(s - c)} }

 \\

 \sf:  \implies{  \sqrt{72(72 -36)(72 - 48)(72 - 60)}   {m}^{2} }

 \\

 \sf:  \implies{ \sqrt{72(36)(24)(12)} \:  {m}^{2}  }

 \\

 \sf:  \implies{12 \times 6 \times 6 \times 2 \:  {m}^{2}  }

 \\

{ \underline{ \boxed{  \bf{ \orange{:  \implies{ {864 \: m}^{2} }}}}}} \:  \bigstar

 \\

 \therefore{ \underline{ \sf{So,  \: the  \: area  \: of  \: the \:  field  \: is \:  {864 m}^{2}  }}}

Answered by Anonymous
6

Answer:

Given :-

  • Perimeter = 144
  • Sides = 3:4:5

To Find :-

Area

SoluTion :-

Let the side be 3x, 4x and 5x

3x + 4x + 5x = 144

12x = 144

x = 144/12

x = 12

3x = 3 × 12 = 36

4x = 4 × 12 = 48

5x = 5 × 12 =60

 \rule{375}{3.5}

Now,

Semiperimeter = Perimeter/2

Semiperimeter = 144/2

Semiperimeter = 72

Now,

Finding Area

Area = √s(s-a)(s-b)(s-c)

Area = √72(72 - 36)(72-48)(72-60)

Area = √72(36)(24)(12)

Area = √746,496

Area = 864 m

Similar questions