Math, asked by gigi45244, 17 days ago

please answer this and faltu answers will be reported

Attachments:

Answers

Answered by senboni123456
11

Step-by-step explanation:

We have,

z =   \bigg|(1 + i) \frac{(2 + i)}{(3 + i)}  \bigg| \\

 \implies \: z =   \bigg|(1 + i) \frac{(2 + i)(3 - i)}{(3 + i)(3 - i)}  \bigg| \\

 \implies \: z =   \bigg|(1 + i) \frac{(6 + 3i - 2i -  {i}^{2}) }{(3)^{2}  -( i)^{2} }  \bigg| \\

 \implies \: z =   \bigg|(1 + i) \frac{(6 + i  -  ( - 1)) }{9  -( - 1) }  \bigg| \\

 \implies \: z =   \bigg|(1 + i) \frac{(6 + i   + 1) }{9   +  1 }  \bigg| \\

 \implies \: z =   \bigg|(1 + i) \frac{(7+ i  ) }{10 }  \bigg| \\

 \implies \: z =   \frac{1}{10}  \bigg|(1 + i) (7+ i  )  \bigg| \\

 \implies \: z =   \frac{1}{10}  | (7 + 7i + i +  {(i)}^{2})  | \\

 \implies \: z =   \frac{1}{10}  | 7 + 8i  +   (- 1)  | \\

 \implies \: z =   \frac{1}{10}  | 7 + 8i  - 1  | \\

 \implies \: z =   \frac{1}{10}  | 6+ 8i    | \\

 \implies \: z =   \frac{1}{10} \times 2  \times  | 3+ 4i    | \\

 \implies \: z =   \frac{1}{5}  | 3+ 4i    | \\

 \implies \: z =   \frac{1}{5}   \sqrt{ ( 3)^{2} + (4)^{2}  }   \\

 \implies \: z =   \frac{1}{5}   \sqrt{ 9 + 16}   \\

 \implies \: z =   \frac{1}{5}   \sqrt{ 25}   \\

 \implies \: z =   \frac{1}{5}    \times 5  \\

 \implies \: z =  1 \\

Similar questions