Math, asked by saifimughal2580, 10 months ago

please answer this as early as possible ​

Attachments:

Answers

Answered by BrainlyPopularman
2

Question :

• Determine the rational numbers 'a' and 'b' if :

  \\ { \bold{ \dfrac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 } +  \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  = a + b \sqrt{3} }} \\

ANSWER :

GIVEN :

  \\ \:  \:  { \huge{.}} \:  \: { \bold{ \dfrac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 } +  \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  = a + b \sqrt{3} }} \\

TO FIND :

• Value of 'a' and 'b' = ?

SOLUTION :

  \\ \implies { \bold{ \dfrac{ \sqrt{3}  - 1}{ \sqrt{3} + 1 } +  \dfrac{ \sqrt{3} + 1 }{ \sqrt{3} - 1 }  = a + b \sqrt{3} }} \\

• We should write this as –

  \\ \implies { \bold{ \dfrac{( \sqrt{3}  - 1)^{2}  +  {( \sqrt{3}  + 1) }^{2} }{( \sqrt{3} + 1 )( \sqrt{3}  - 1)}= a + b \sqrt{3} }} \\

▪︎ Using identities –

  \\ \dashrightarrow { \bold{ {(a \: \pm \:  b)}^{2} =  {a}^{2}  + {b}^{2}  \:  \pm \: 2ab }} \\

  \\ \dashrightarrow { \bold{ {(a + b)}(a - b) =  {a}^{2}  - {b}^{2}  }} \\

▪︎ So that –

  \\ \implies { \bold{ \dfrac{( \sqrt{3} )^{2}  + 1 - 2 \sqrt{3}  +  {( \sqrt{3} ) }^{2} + 1 + 2 \sqrt{3}  }{( \sqrt{3})^{2}   - (1)^{2} }= a + b \sqrt{3} }} \\

  \\ \implies { \bold{ \dfrac{3 + 1 + 3 + 1}{3 - 1}= a + b \sqrt{3} }} \\

  \\ \implies { \bold{ \dfrac{8}{2}= a + b \sqrt{3} }} \\

  \\ \implies { \bold{4= a + b \sqrt{3} }} \\

▪︎ Now Let's compare –

  \\ \dashrightarrow \large \:\:  { \boxed{ \bold{a  = 4}}} \\

• And –

  \\ \dashrightarrow \large \:\:  { \boxed{ \bold{b  = 0}}} \\

Similar questions