Math, asked by nielsangode, 10 months ago

please answer this asps​

Attachments:

Answers

Answered by MOSFET01
8

Solution

In above attachment clearly solution is mentioned

Take LHS

\dfrac{tan\:A\:+\: sec\:A\:-\:1}{tan\:A\:-\:sec\:A\:+\:1}

 formula \implies \: tan^{2}\: +\: 1\: = \: sec^{2}\:A

 sec^{2}\: A \: -\: tan^{2}\: A\: = \: 1

\implies \dfrac{tan\: A\: +\: sec\: A \: - \: (sec^{2}\:A\:-\:tan^{2}\:A}{tan\:A\: - \: sec\: A \: +\: 1}

\implies \dfrac{(tan\:A\: + \: sec\:A)\:-\:[(sec\:A\:-\:tan\:A)(sec\:A\: + \: tan\:A)]}{tan\:A\:-\: sec\: A\: +\: 1}

\implies \dfrac{(tan\:A\: + \: sec\:A)[1\: - \: (sec\: A\: - \tan\:A)]}{tan\:A\:-\: sec\: A\: +\: 1}

\implies \dfrac{(tan\:A\: + \: sec\:A)[1\: - \: sec\: A\: + \tan\:A]}{tan\:A\:-\: sec\: A\: +\: 1}

Rearrange denominator for elimination

\implies \dfrac{(tan\:A\: + \: sec\:A)[1\: - \: sec\: a\: + \tan\:A]}{1\:-\: sec\: A\: +\:tan\:A }

\implies tan\:A\: + \: sec\:A

\implies \dfrac{sin\: A}{cos\: A}\: + \: \dfrac{1}{cos\: A}

\implies \dfrac{sin\:A\: + \: 1}{cos\: A}

or

\implies \dfrac{1\: + \:sin\:A}{cos\: A}

\boxed{LHS = RHS}

Hence Proved

Attachments:

Anonymous: Awesome
MOSFET01: :-) wah Allah thank you
Anonymous: Awesome
Anonymous: Nice handwriting
Answered by BrainlySmile
5

Answer- The above question is from the chapter 'Introduction to Trigonometry'.

Trigonometry- The branch of Mathematics which helps in dealing with measure of three sides of a right-angled triangle is called Trigonometry.

Trigonometric Ratios:

sin θ  = Perpendicular/Hypotenuse

cos θ = Base/Hypotenuse

tan θ = Perpendicular/Base

cosec θ = Hypotenuse/Perpendicular

sec θ = Hypotenuse/Base

cot θ = Base/Perpendicular

Also, tan θ = sin θ/cos θ and cot θ = cos θ/sinθ.

Trigonometric Identites:

1. sin²θ + cos²θ = 1

2. sec²θ - tan²θ = 1

3. cosec²θ - cot²θ = 1

Given question: Prove that-

 \frac{tan \: A + sec \: A - 1}{tan \: A - sec \: A + 1} =  \frac{1 + sin \: A}{cos \: A}

Solution: The answer has been attached.

Attachments:

Anonymous: Great answer
Anonymous: Awesome + Handwriting is superb
Similar questions