Math, asked by abhishek20041017, 7 hours ago

please answer this equation​

Attachments:

Answers

Answered by ag6838774
1

Answer:

Thanks and follow.

❤️❤️ Love you friend ✨❤️❤️

Attachments:
Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:cos\theta  = \dfrac{ \sqrt{4 -  {x}^{2} } }{2}

We know that,

\rm :\longmapsto\: {sin}^{2}\theta  +  {cos}^{2} \theta  = 1

\rm :\longmapsto\: {sin}^{2}\theta  +   \dfrac{4 -  {x}^{2} }{4}   = 1

\rm :\longmapsto\: {sin}^{2}\theta \:  = 1 -  \dfrac{4 -  {x}^{2} }{4}

\rm :\longmapsto\: {sin}^{2}\theta \:  =  \dfrac{4 - (4 -  {x}^{2}) }{4}

\rm :\longmapsto\: {sin}^{2}\theta \:  =  \dfrac{4 - 4  +  {x}^{2}}{4}

\rm :\longmapsto\: {sin}^{2}\theta \:  =  \dfrac{{x}^{2}}{4}

\bf\implies \:sin\theta  = \dfrac{x}{2}

Now, we know that,

\purple{\rm :\longmapsto\:sec\theta  = \dfrac{1}{cos\theta } }

\bf\implies \:sec\theta  = \dfrac{4}{ \sqrt{4 -  {x}^{2} } }

Also,

\purple{\rm :\longmapsto\:tan\theta  = \dfrac{sin\theta }{cos\theta } = \dfrac{\dfrac{x}{2} }{\dfrac{ \sqrt{4 -  {x}^{2} } }{4} }  = \dfrac{2x}{ \sqrt{4 -  {x}^{2} } } }

Also,

 \purple{\rm :\longmapsto\:cot\theta  = \dfrac{1}{tan\theta } = \dfrac{ \sqrt{4 -  {x}^{2} } }{2x}}

Also,

\purple{\rm :\longmapsto\:cosec\theta  = \dfrac{1}{sin\theta } =  \dfrac{2}{x}  }

Consider (i)

\rm :\longmapsto\:sec\theta  \: tan\theta

On substituting the values, we get

\rm \:  =  \:  \:\dfrac{4}{ \sqrt{4 -  {x}^{2} } }  \times \dfrac{2x}{ \sqrt{4 -  {x}^{2} } }

\rm \:  =  \:  \:\dfrac{8x}{4 -  {x}^{2} }

Consider (ii)

\rm :\longmapsto\:cosec\theta  \: cot\theta

\rm \:  =  \:  \:\dfrac{2}{x}  \times \dfrac{ \sqrt{4 -  {2}^{2} } }{2x}

\rm \:  =  \:  \: \dfrac{ \sqrt{4 -  {2}^{2} } }{ {x}^{2} }

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Similar questions